【題目】
(1)計(jì)算:3( ﹣π)0﹣ +(﹣1)2011
(2)先化簡,再求值: ,其中x= -3.
(3)如圖,平行四邊形ABCD的對角線AC、BD交于點(diǎn)O,E、F在AC上,G、H在BD上,且AF=CE,BH=DG. 求證:GF∥HE.
【答案】
(1)解:解:原式=3×1﹣(2﹣ )+(﹣1)=
(2)解: ,
= ,
= ,
= ,
當(dāng)x= ﹣3 時,原式=
(3)解:證明:∵平行四邊形ABCD中,OA=OC,
又∵AF=CE,
∴AF﹣OA=CE﹣OC,
即OF=OE.
同理得:OG=OH,
∴四邊形EGFH是平行四邊形,
∴GF∥HE
【解析】(1)按照實(shí)數(shù)的混合運(yùn)算順序直接進(jìn)行計(jì)算;(2)先通分把分式化簡,再代入求值;(3)先運(yùn)用平行四邊形的對角線互相平分,結(jié)合已知證明平行四邊形EGHF是平行四邊形,再運(yùn)用平行四邊形的對邊互相平行得GF∥HE.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解零指數(shù)冪法則的相關(guān)知識,掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù)),以及對二次根式的混合運(yùn)算的理解,了解二次根式的混合運(yùn)算與實(shí)數(shù)中的運(yùn)算順序一樣,先乘方,再乘除,最后加減,有括號的先算括號里的(或先去括號).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果把一個自然數(shù)各數(shù)位上的數(shù)字從最高位到個位依次排出的一串?dāng)?shù)字,與從個位到最高位依次排出的一串?dāng)?shù)字完全相同,那么我們把這樣的自然數(shù)稱為“和諧數(shù)”.例如:自然數(shù)12321,從最高位到個位排出的一串?dāng)?shù)字是:1,2,3,2,1,從個位到最高排出的一串?dāng)?shù)字仍是:1,2,3,2,1,因此12321是一個“和諧數(shù)”.再如:22,545,3883,34543,…,都是“和諧數(shù)”.
(1)請你直接寫出3個四位“和諧數(shù)”;請你猜想任意一個四位“和諧數(shù)”能否被11整除,并說明理由;
(2)已知一個能被11整除的三位“和諧數(shù)”,設(shè)其個位上的數(shù)字為x(,x為自然數(shù)),十位上的數(shù)字為y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B、C、D、E、F是⊙O的六等分點(diǎn).
(1)連接AB、AD、AF,求證:AB+AF=AD;
(2)若P是圓周上異于已知六等分點(diǎn)的動點(diǎn),連接PB、PD、PF,寫出這三條線段長度的數(shù)量關(guān)系(不必說明理由).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90,BD是△ABC的角平分線,點(diǎn)O在BD上,分別過點(diǎn)O作OE⊥BC,OF⊥AC,垂足為E,F,且OE=OF.
(1)求證:點(diǎn)O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.兩條直線被第三條直線所截,同位角相等
B.在同一平面內(nèi),垂直于同一條直線上的兩直線平行
C.在同一平面內(nèi),平行于同一直線的兩直線平行
D.兩點(diǎn)之間線段最短
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四邊形ABCD中,已知AB與 CD不平行,∠ABD=∠ACD,請你添加一個條件:______ ,使的加上這個條件后能夠推出AD∥BC ,且AB=CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com