【題目】如圖,AB//CD,G在直線AB, H在直線CD,KAB、CD之間且在G、H所在直線的左側, GKH=60°,P為線段KH上一點(不和KH重合),連接PG并延長到M, 設∠KHC=nKGP,要使得為定值,則n=_____

【答案】3

【解析】

延長MPCD于點O,設∠KGP=x,則∠KHC=nx,利用平行線的性質以及三角形外角性質,即可得到∠GPH=60°+x,∠AGM=COM=120°+n-1x,由 為定值可得n的值.

解:延長MPCD于點O,

設∠KGP=x,則∠KHC=nx,

∵∠GKH=60°,

∴∠GPH=60°+x

OPH=180°-60°+x=120°-x,

ABCD,

∴∠AGM=COM=OPH+KHC=120°-x+ nx=120°+n-1x,

=

n-1=2時, 為定值:==2,

n-1=2,n=3.

故答案為:3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=ax+b與反比例函數(shù) (x>0)的圖象交于A(2,4),B(4,n)兩點,與x軸,y軸分別交于C,D兩點.

(1)求m,n的值;
(2)求△AOB的面積;
(3)若線段CD上的點P到x軸,y軸的距離相等.求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在ABCD中,E、F分別是AB、CD的中點,AF與DE相交于點G,CE與BF相交于點H.

(1)求證:四邊形EHFG是平行四邊形;
(2)若四邊形EHFG是矩形,則ABCD應滿足什么條件?(不需要證明)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為改善辦學條件,北海中學計劃購買部分品牌電腦和品牌課桌.第一次,用9萬元購買了品牌電腦10臺和品牌課桌200張.第二次,用9萬元購買了品牌電腦12臺和品牌課桌120張.

1)每臺品牌電腦與每張品牌課桌的價格各是多少元?

2)第三次購買時,銷售商對一次購買量大的客戶打折銷售.規(guī)定:一次購買品牌電腦35臺以上(含35臺),按九折銷售,一次購買品牌課桌600張以上(含600張),按八折銷售.學校準備用27萬元購買電腦和課桌,其中電腦不少于35臺,課桌不少于600張,問有幾種購買方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,于點,點中點,連接于點,且,過點,交于點

求證:(1

2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在兩條垂直相交的道路上,一輛自行車和一輛摩托車相遇后又分別向北向東駛去,若自行車與摩托車每秒分別行駛米、米,則秒后兩車相距( )米.

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角梯形ABCD中,AB∥CD,AD⊥DC,AB=BC,且AE⊥BC.

(1)求證:AD=AE;
(2)若AD=8,DC=4,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線 (a1>0)與拋物線 (a2<0)都經(jīng)過y軸正半軸上的點A.過點A作x軸的平行線,分別與這兩條拋物線交于B、C兩點,以BC為邊向下作等邊△BCD,則△BCD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,EF分別是邊AB、CD上的點,AE=CF,連接EFBF,EF與對角線AC交于O點,且BE=BF,∠BEF=2∠BAC。

1)求證:OE=OF;

2)若BC=,求AB的長。

查看答案和解析>>

同步練習冊答案