【題目】如圖,在△ABC中,∠A90°,PBC上一點,且DBDC,過BC上一點P,作PEABEPFDCF,已知:ADDB13BC,則PE+PF的長是( )

A. B. 6C. D.

【答案】C

【解析】

根據(jù)三角形的面積判斷出PE+PF的長等于AC的長,這樣就變成了求AC的長;在RtACDRtABC中,利用勾股定理表示出AC,解方程就可以得到AD的長,再利用勾股定理就可以求出AC的長,也就是PE+PF的長.

∵△DCB為等腰三角形,PEAB,PFCDACBD,

SBCD=BDPE+CDPF=BDAC,

PE+PF=AC,

設(shè)AD=x,BD=CD=3x,AB=4x,

AC2=CD2-AD2=3x2-x2=8x2,

AC2=BC2-AB2=2-4x2

x=2,

AC=4,

PE+PF=4

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠B=AFE,EA是∠BEF的平分線,求證:

(1)ABE≌△AFE

(2)FAD=CDE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6,BC=8,點D為邊CB上的一個動點(點D不與點B重合),過DDOAB,垂足為O,點B′在邊AB上,且與點B關(guān)于直線DO對稱,連接DB′,AD

1)求證:DOB∽△ACB

2)若AD平分∠CAB,求線段BD的長;

3)當(dāng)AB′D為等腰三角形時,求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)調(diào)查,初中學(xué)生課桌椅不合格率達76.7%(不合格是指不能按照學(xué)生不同的身高來調(diào)節(jié)課桌椅的高度),為了解初中生的身高情況,隨機抽取了某校初中部分男生、女生進行調(diào)查收集數(shù)據(jù)如下:

男生身高(單位:cm):163 161 160 163 161 162 163 164 163 163

女生身高(單位:cm):164 161 160 161 161 162 160 162 163 162

整理數(shù)據(jù):

160

161

162

163

164

男生(人)

1

2

1

a

1

女生(人)

2

b

3

1

1

根據(jù)以上信息,解答下列問題:

1)填空:a  ,b  ,并補全條形統(tǒng)計圖;

2)現(xiàn)有兩名身高都為163cm的男生和女生,比較這兩名同學(xué)分別在男生、女生中的身高情況,并簡述理由;

3)根據(jù)相關(guān)研究發(fā)現(xiàn),只有身高為161cm的初中生課桌椅是合格的,試估計全校1000名學(xué)生中,有多少名學(xué)生的課桌椅是合格的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ABCD,直線EF分別交AB、CD于點A、CCM是∠ACD的平分線,CMAB于點N

1)如圖,過點AAC的垂線交CM于點M,若∠MCD55°,求∠MAN的度數(shù);

2)如圖,點GCD上的一點,連接MA、MG,若MC平分∠AMG且∠AMG36°,∠MGD+EAB180°,求∠ACD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點.

(1)寫出點A、點B的坐標(biāo);

(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設(shè)直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;

(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知B0b)(b0)是y軸上一動點,直線l經(jīng)過點A1,0)及點B,將RtABO折疊,使得點B與點O重合,折痕分別交y軸、直線AB于點E、F,連接OF

1)當(dāng)b2時,求直線l的函數(shù)解析式;

2)請用含有字母b的代數(shù)式表示線段OF的長,并說明線段OF與線段AB的數(shù)量關(guān)系;

3)如圖,在(1)的條件下,設(shè)點P是線段AB上一動點(不與A、B重合),將線段OP繞點O逆時針旋轉(zhuǎn)90°至OQ,連結(jié)BQ、PQ,PQy軸于點T,設(shè)點P的橫坐標(biāo)為t

當(dāng)△OPQ的面積最小時,求T的坐標(biāo);

若△OPB是等腰三角形,請直接寫出滿足條件的t的值;

若△OQB是直角三角形,請直接寫出滿足條件的t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在7×7網(wǎng)格中,每個小正方形的邊長都為1

(1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系后,若點A(1,3)、C(2,1),則點B的坐標(biāo)為______;

(2)ABC的面積為______

(3)判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于A、B兩點,且點A的橫坐標(biāo)和點B的縱坐標(biāo)都是-2 求:

(1)一次函數(shù)的解析式;

(2)△AOB的面積

查看答案和解析>>

同步練習(xí)冊答案