年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:初中數(shù)學(xué) 三點(diǎn)一測叢書 八年級(jí)數(shù)學(xué) 下。ńK版課標(biāo)本) 江蘇版 題型:044
閱讀下列材料并解決有關(guān)問題:
化簡含有絕對(duì)值的代數(shù)式的一種方法我們知道|x|=現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對(duì)值的代數(shù)式,如化簡代數(shù)式|x+1|+|x-2|時(shí),可令x+1=0和x-2=0,分別求得x=-1,x=2(稱-1,2分別為|x+1|與|x-2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=-1和x=2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:
(1)x<-1;(2)-1≤x<2;(3)x≥2.
從而化簡代數(shù)式|x+1|+|x-2|可分以下3種情況:
(1)當(dāng)x<-1時(shí),原式=-(x+1)-(x-2)=-2x+1;
(2)當(dāng)-1≤x<2時(shí),原式=x+1-(x-2)=3;
(3)當(dāng)x≥2時(shí),原式=x+1+x-2=2x-1.
綜上討論,原式=
通過以上閱讀,請(qǐng)你解決以下問題:
(1)分別求出|x+2|和|x-4|的零點(diǎn)值;
(2)化簡代數(shù)式|x+2|+|x-4|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新課標(biāo)教材導(dǎo)學(xué) 數(shù)學(xué)九年級(jí)(第一學(xué)期) 題型:038
計(jì)算:++…++(n為正整數(shù)).
這個(gè)式子共有n項(xiàng),屬于異分母分?jǐn)?shù)加減的類型.如果先通分,將各項(xiàng)化為同分母分?jǐn)?shù)的話,分母將十分龐大,這是很困難的,在實(shí)際運(yùn)算的時(shí)候也是不現(xiàn)實(shí)的,那么怎么辦呢?
讓我們分析一下各項(xiàng)的特點(diǎn):都是的形式,當(dāng)n取從1開始漸次增大的自然數(shù)時(shí),就是各項(xiàng)了.可以把看成是各項(xiàng)的代表式.我們知道
-==,
故=-.
利用這一點(diǎn),每一項(xiàng)都可以拆成兩項(xiàng),由于n是按自然數(shù)逐次遞增的,所以前后兩項(xiàng)拆開后會(huì)有相同部分可以抵消,如:
-
=(-)+(-)
=1-+-
=.
所以可得
++…++
=(-)+(-)+…+(-)+(-)
=1-+-+…+-+-
=1-
=.
看!經(jīng)過拆項(xiàng)以后,原本很復(fù)雜的計(jì)算,一下子簡單了!諾長的一個(gè)式子,最后的結(jié)果也很簡單.“巧拆”帶來“巧算”.
利用這樣拆分的方法,你想想下面的計(jì)算題,能否做到又快又準(zhǔn)呢?
(1)++…+(n為大于2的整數(shù));
(2)++…+(n為正整數(shù));
(3)++…+(n為正整數(shù)).
在你完成上面的計(jì)算后,可與同學(xué)們討論一下,對(duì)于
++…+(n為正整數(shù))
能否還采用這樣的拆項(xiàng)方法進(jìn)行巧算?為什么?再與同學(xué)們探索一下,對(duì)于下面的式子,如何計(jì)算?
+++…+(n為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:活學(xué)巧練八年級(jí)數(shù)學(xué)(下) 題型:044
我們知道Rt△ABC中,∠A=時(shí),就有BC2=AC2+AB2,反過來在△ABC中,若有AC2+AB2=BC2,是否存在∠A=這樣的結(jié)論呢?下面就這個(gè)問題我們進(jìn)行探究.
已知△ABC中,AC2+AB2=BC2.
求證:∠A=.
證明:作,使=,
=AB,=AC,
∴=+.
∴=AB2+AC2.又∵BC2=AB2+AC2,
∴_____________
在△ABC和中,
∴_____________
∴_____________
(1)補(bǔ)充上述證明過程空缺的部分;
(2)上面已證的命題就是勾股定理的逆定理,可以直接運(yùn)用上述的結(jié)論解決下面的問題:
已知正方形ABCD,AB=a,點(diǎn)E為AB的中點(diǎn),點(diǎn)F在AD邊上,且AF=AD,用兩種不同的方法證明:EF⊥CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:新課標(biāo)教材導(dǎo)學(xué) 數(shù)學(xué)七年級(jí)(第一學(xué)期) 題型:038
我們知道:
=1-,=-,=-,…,
那么=________.
利用上面的規(guī)律計(jì)算:
(1)+++…+;
(2)+++…+.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com