【題目】如圖,A過OBCD的三頂點O、D、C,邊OB與A相切于點O,邊BC與O相交于點H,射線OA交邊CD于點E,交A于點F,點P在射線OA上,且∠PCD=2∠DOF,以O為原點,OP所在的直線為x軸建立平面直角坐標系,點B的坐標為(0,﹣2).

(1)若BOH=30°,求點H的坐標;

(2)求證:直線PC是A的切線;

(3)若OD=,求A的半徑.

【答案】(1)(1,﹣);(2)詳見解析;(3).

【解析】

(1)先判斷出OH=OB=2,利用三角函數(shù)求出MH,OM,即可得出結論;
(2)先判斷出∠PCD=∠DAE,進而判斷出∠PCD=∠CAE,即可得出結論;
(3)先求出OE═3,進而用勾股定理建立方程,r2-(3-r)2=1,即可得出結論.

(1)解:如圖,過點HHMy軸,垂足為M.

∵四邊形OBCD是平行四邊形,

∴∠B=ODC

∵四邊形OHCD是圓內(nèi)接四邊形

∴∠OHB=ODC

∴∠OHB=B

OH=OB=2

∴在RtOMH中,

∵∠BOH=30°,

MH=OH=1,OM=MH=,

∴點H的坐標為(1,﹣),

(2)連接AC.

OA=AD,

∴∠DOF=ADO

∴∠DAE=2DOF

∵∠PCD=2DOF,

∴∠PCD=DAE

OB與⊙O相切于點A

OBOF

OBCD

CDAF

∴∠DAE=CAE

∴∠PCD=CAE

∴∠PCA=PCD+ACE=CAE+ACE=90°

∴直線PC是⊙A的切線;

(3)解:⊙O的半徑為r.

RtOED中,DE=CD=OB=1,OD= ,

OE═3

OA=AD=r,AE=3﹣r.

RtDEA中,根據(jù)勾股定理得,r2﹣(3﹣r)2=1

解得r=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=x2+bx+c的圖象與x軸交于A、B兩點,A點在原點的左側,B點的坐標為(3,0),與y軸交于C(0,﹣3)點,點P是直線BC下方的拋物線上一動點.

(1)求這個二次函數(shù)的表達式;

(2)求出四邊形ABPC的面積最大時的P點坐標和四邊形ABPC的最大面積;

(3)在直線BC找一點Q,使得△QOC為等腰三角形,寫出Q點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃一次性購買排球和籃球,每個籃球的價格比排球貴30元;購買2個排球和3個籃球共需340元.

(1)求每個排球和籃球的價格:

(2)若該校一次性購買排球和籃球共60個,總費用不超過3800元,且購買排球的個數(shù)少于39個.設排球的個數(shù)為m,總費用為y元.

①求y關于m的函數(shù)關系式,并求m可取的所有值;

②在學校按怎樣的方案購買時,費用最低?最低費用為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的三個頂點在邊長為1的正方形網(wǎng)格中,已知,.

(1)畫出關于軸對稱的(其中,,分別是,,的對應點,不寫畫法)

(2)分別寫出,三點的坐標.

(3)請寫出所有以為邊且與全等的三角形的第三個頂點(不與重合)的坐標_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學現(xiàn)有學生2650人,學校為了進一步了解學生課余生活,組織調查各興趣小組活動情況,為此校學生會進行了一次隨機抽樣調查,根據(jù)采集到的數(shù)據(jù),繪制如下兩個統(tǒng)計圖(不完整)

請你根據(jù)兩個統(tǒng)計圖中提供的信息,解答下列問題:

(1)這次抽樣調查的樣本容量是多少?在圖2中,請將條形統(tǒng)計圖中的“體育”部分的圖形補充完整;

(2)愛好“書畫”的人數(shù)占被調查人數(shù)的百分數(shù)是多少?估計該中學現(xiàn)有的學生中,愛好“書畫”的人數(shù);

(3)求愛好“音樂”的人數(shù)對應扇形圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y=ax2+bx+c(x為任意實數(shù))經(jīng)過下圖中兩點M(1,﹣2)、N(m,0),其中M為拋物線的頂點,N為定點.下列結論:

若方程ax2+bx+c=0的兩根為x1,x2(x1<x2),則﹣1<x1<0,2<x2<3;

當xm時,函數(shù)值y隨自變量x的減小而減。

③a>0,b<0,c>0.

垂直于y軸的直線與拋物線交于C、D兩點,其C、D兩點的橫坐標分別為s、,則s+t=2.

其中正確的是( 。

A. ①② B. ①④ C. ②③ D. ②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平行四邊形ABCD中,AM=CN.求證:四邊形MBND是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,甲乙兩人以相同的路線前往距離單位的培訓中心參加學習,圖中,分別表示甲乙兩人前往目的地所走的路程(千米)隨時間()變化的函數(shù)圖象,以下說法:

①乙比甲提前12分鐘到達

②甲平均速度為0.25千米/小時

③甲、乙相遇時,乙走了6千米

④乙出發(fā)6分鐘后追上甲,其中正確的是(  )

A.①②B.③④C.①③④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某數(shù)學老師為了了解學生在數(shù)學學習中常見錯誤的糾正情況,收集整理了學生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對他所教的初三(1)班、(2)班進行了檢測,如圖表示從兩班各隨機抽取的10名學生的得分情況.

1)利用圖中提供的信息,補全下表:

班級

平均數(shù)/

中位數(shù)/

眾數(shù)/

初三(1)班

__________

24

________

初三(2)班

24

_________

21

2)若把24分以上(含24分)記為優(yōu)秀,兩班各40名學生,請估計兩班各有多少名學生成績優(yōu)秀;

3)觀察上圖的數(shù)據(jù)分布情況,請通過計算說明哪個班的學生糾錯的得分更穩(wěn)定.

查看答案和解析>>

同步練習冊答案