已知:如圖在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,11),C(0,5),點(diǎn)D為線段BC中點(diǎn),已知D點(diǎn)的橫坐標(biāo)為4,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線OABD的路線移動(dòng),至點(diǎn)D停止,設(shè)移動(dòng)的時(shí)間為t秒

(1)求直線BC的解析式;
(2)若動(dòng)點(diǎn)P在線段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的數(shù)學(xué)公式
(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OABD的路線移動(dòng)過(guò)程中,設(shè)△OPD面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

解:(1)設(shè)直線BC的解析式為y=kx+b,直線過(guò)B(8,11),C(0,5),
,
解得
解析式為y=x+5;

(2)∵點(diǎn)D為線段BC的中點(diǎn),
∴D(4,8)
由題意得×5×4+×8t=××8×(5+11),
解得t=(s);

(3)當(dāng)P在OA上時(shí),S=×t×8=4t (0<t≤8)
當(dāng)P在AB上時(shí),S=(4+10)×8-×4×4-×8×(t-8)-(18-t)×4,
S=-2t+44 (8<t≤18)
當(dāng)P在BD上時(shí),S=S梯形OCAB-S三角形OCD-S三角形OPA-S三角形ABP
=56-8-4[10-(t-18)]-5(t-18)
=-t+.(18<t<23)
當(dāng)P在OD上時(shí),S=0(23≤t≤23+);
答:(1)解析式為y=t+4;
(2)當(dāng)t=(s)時(shí),四邊形OPDC的面積是梯形COAB面積的
(3)分別是S=×t×8=4t (0<t≤8),S=-2t+44 (8<t≤18),S==-t+.(18<t<23);S=0(23≤t≤23+).
分析:(1)題目給出了B、C點(diǎn)的坐標(biāo),可設(shè)出直線BC的解析式,應(yīng)用待定系數(shù)法求出解析式即可;
(2)可根據(jù)四邊形OPDC的面積是梯形COAB面積的列出方程并解出方程即可;
(3)要根據(jù)P的位置在不同邊的具體情況利用相關(guān)的知識(shí)寫出函數(shù)關(guān)系式及取值范圍.
點(diǎn)評(píng):本題考查了一次函數(shù)的綜合運(yùn)用;做題時(shí)要認(rèn)真理解題意,找出等量關(guān)系,而分類討論是正確解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知,如圖在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)E,且AE=AC,連AG.精英家教網(wǎng)
(1)求證:FC=BE;
(2)若AD=DC=2,求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:如圖在直角梯形COAB中,OC∥AB,以O(shè)為原點(diǎn)建立平面直角坐標(biāo)系,A、B、C三點(diǎn)的坐標(biāo)分別為A(8,0),B(8,11),C(0,5),點(diǎn)D為線段BC中點(diǎn),已知D點(diǎn)的橫坐標(biāo)為4,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),以每秒1個(gè)單位的速度,沿折線OABD的路線移動(dòng),至點(diǎn)D停止,設(shè)移動(dòng)的時(shí)間為t秒

(1)求直線BC的解析式;
(2)若動(dòng)點(diǎn)P在線段OA上移動(dòng),當(dāng)t為何值時(shí),四邊形OPDC的面積是梯形COAB面積的
14

(3)動(dòng)點(diǎn)P從點(diǎn)O出發(fā),沿折線OABD的路線移動(dòng)過(guò)程中,設(shè)△OPD面積為S,求S與t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省九年級(jí)下學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

已知,如圖在直角梯形ABCD中,AD∥BC,∠A=900,BC=CD=10,

(1)求梯形ABCD的面積;

(2)點(diǎn)E、F分別是BC、CD上的動(dòng)點(diǎn),點(diǎn)E從點(diǎn)B出發(fā)向點(diǎn)C運(yùn)動(dòng),點(diǎn)F從點(diǎn)C出發(fā)向點(diǎn)D運(yùn)動(dòng),若兩點(diǎn)均以每秒1個(gè)單位的速度同時(shí)出發(fā),連接EF,求△EFC面積的最大值,并說(shuō)明此時(shí)E、F的位置。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年湖北省襄陽(yáng)市棗陽(yáng)五中中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

已知,如圖在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于點(diǎn)F,交BC于點(diǎn)G,交AB的延長(zhǎng)線于點(diǎn)E,且AE=AC,連AG.
(1)求證:FC=BE;
(2)若AD=DC=2,求AG的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案