【題目】某企業(yè)工會(huì)開展“一周工作量完成情況”調(diào)查活動(dòng),隨機(jī)調(diào)查了部分員工一周的工作量剩余情況,并將調(diào)查結(jié)果統(tǒng)計(jì)后繪制成如圖1和圖2所示的不完整統(tǒng)計(jì)圖.
(1)被調(diào)查員工人數(shù)為 人:
(2)把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該企業(yè)有員工10000人,請估計(jì)該企業(yè)某周的工作量完成情況為“剩少量”的員工有多少人?
【答案】(1)800;(2)補(bǔ)圖見解析;(3)3500人.
【解析】(1)由“不剩”的人數(shù)及其所占百分比即可得答案;
(2)用總?cè)藬?shù)減去其它類型人數(shù)求得“剩少量”的人數(shù),據(jù)此補(bǔ)全圖形即可;
(3)用總?cè)藬?shù)乘以樣本中“剩少量”人數(shù)所占百分比可得.
(1)被調(diào)查員工人數(shù)為400÷50%=800人,
故答案為:800;
(2)“剩少量”的人數(shù)為800﹣(400+80+40)=280人,
補(bǔ)全條形圖如下:
(3)估計(jì)該企業(yè)某周的工作量完成情況為“剩少量”的員工有10000×=3500人.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】漁夫在靜水劃船總是每小時(shí)5里,現(xiàn)在逆水行舟,水流速度是每小時(shí)3里;一陣風(fēng)把他帽子吹落在水中,假如他沒有發(fā)現(xiàn),繼續(xù)向前劃行;等他發(fā)覺時(shí)人與帽子相距2.5里;
于是他立即原地調(diào)頭追趕帽子,原地調(diào)轉(zhuǎn)船頭用了10分鐘.
計(jì)算:
(1)求順?biāo)俣龋嫠俣仁嵌嗌伲?/span>
(2)從帽子丟失到發(fā)覺經(jīng)過了多少時(shí)間?
(3)從發(fā)覺帽子丟失到撿回帽子經(jīng)過了多少時(shí)間?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:A、B兩點(diǎn)在直線l的同一側(cè),線段AO,BM均是直線l的垂線段,且BM在AO的右邊,AO=2BM,將BM沿直線l向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線l相交于點(diǎn)P.
(1)當(dāng)P與O重合時(shí)(如圖2所示),設(shè)點(diǎn)C是AO的中點(diǎn),連接BC.求證:四邊形OCBM是正方形;
(2)請利用如圖1所示的情形,求證:=;
(3)若AO=2,且當(dāng)MO=2PO時(shí),請直接寫出AB和PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1.在△ABC中,∠ACB=90°,點(diǎn)P為△ABC內(nèi)一點(diǎn).
(1)連接PB、PC,將△BCP沿射線CA方向平移,得到△DAE,點(diǎn)B、C、P的對應(yīng)點(diǎn)分別為點(diǎn)D、A、E,連接CE.
①依題意,請?jiān)趫D2中補(bǔ)全圖形;
②如果BP⊥CE,AB+BP=9,CE=,求AB的長.
(2)如圖3,以點(diǎn)A為旋轉(zhuǎn)中心,將△ABP順時(shí)針旋轉(zhuǎn)60°得到△AMN,連接PA、PB、PC,當(dāng)AC=4,AB=8時(shí),根據(jù)此圖求PA+PB+PC的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是菱形ABCD的對角線,∠CBD=75°,
(1)請用尺規(guī)作圖法,作AB的垂直平分線EF,垂足為E,交AD于F;(不要求寫作法,保留作圖痕跡)
(2)在(1)條件下,連接BF,求∠DBF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC在直角坐標(biāo)系中,
(1)請寫出△ABC各點(diǎn)的坐標(biāo).
(2)求出△ABC的面積.
(3)若把△ABC向上平移2個(gè)單位,再向右平移2個(gè)單位得△A′B′C′,在圖中畫出△ABC變化位置。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角△ABC中,AB=AC,點(diǎn)D是斜邊BC的中點(diǎn),點(diǎn)E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF.
(1)證明:BE+CF=EF2;
(2)若BE=12,CF=5,求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個(gè)等邊△AB1C1;再以等邊△AB1C1的B1C1邊上的高AB2為邊作等邊三角形,得到第二個(gè)等邊△AB2C2;再以等邊△AB2C2的B2C2邊上的高AB3為邊作等邊三角形,得到第三個(gè)等邊△AB3C3;…,記△B1CB2的面積為S1,△B2C1B3的面積為S2,△B3C2B4的面積為S3,如此下去,則Sn=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個(gè)字母的等式或不等式:①=﹣1;②ac+b+1=0;③abc>0;④a﹣b+c>0.其中正確的個(gè)數(shù)是( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com