【題目】如圖,在平面直角坐標系xOy內(nèi),A在直線y=3x上(點A在第一象限),

(1)求點A的坐標;

(2)過點AABx垂足為點B,如果點E和點A都在反比例函數(shù)圖像上(點E在第一象限),過點EEFy,垂足為點F如果,求點E的坐標

【答案】(1)的坐標為;(2)E

【解析】

(1)設(shè)出A點坐標,勾股定理解題,

(2)作出圖像,根據(jù)A點坐標求出反比例函數(shù)解析式,進而表示出E點坐標,根據(jù),解方程即可.

:(1)∵A在直線y=3x,

∴設(shè)A(a,3a),

∵OA=,

a2+2a2=()2,

解得:a=2,

∴點的坐標為

(2)如下圖,設(shè)反比例函數(shù)解析式為y=,E(m,n),

A y=得:k=12,即反比例函數(shù)解析式為y=,

,m|6-n|=12,整理得m|6-|=12,

解得:m=0(舍),m=4,

E

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列因式分解的過程,再回答所提出的問題:

1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]

=(1+x)2(1+x)

=(1+x)3

(1)上述分解因式的方法是 ,共應(yīng)用了 .

(2)若分解1+x+x(x+1)+x(x+1)2++ x(x+1)2004,則需應(yīng)用上述方法 次,結(jié)果是 .

(3)分解因式:1+x+x(x+1)+x(x+1)2++ x(x+1)n(n為正整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠D=∠C90°,點ECD上,AE平分∠DABBE平分∠CBA,若AD4,AB6,求CB的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長是4,DAC的平分線交DC于點E,若點P、Q分別是ADAE上的動點,則DQ+PQ的最小值(  )

A、2

B、4

C

D、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,點P是對角線AC上一點,連結(jié)BP,過P作PQBP,PQ交CD于Q,若AP=4,CQ=10,則正方形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,觀察數(shù)軸,請回答:

(1)與點的距離為 ,點與點的距離為 ;

與點的距離為 ,點與點的距離為 ;

(2)發(fā)現(xiàn):在數(shù)軸上,如果點與點分別表示數(shù),則它們之間的距離可表示為 (表示)

(3)利用發(fā)現(xiàn)的結(jié)論,逆向思維解決下列問題:

①數(shù)軸上表示的點之間的距離是,則的值是 ;

,則 ;

③數(shù)軸上是否存在表示的點,使點到點、點的距離之和為?若存在,請求出的值;若不存在,說明理由;

的最小值為 ;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.

(1)求一次函數(shù)y=kx+b的關(guān)系式;

(2)結(jié)合圖象,直接寫出滿足kx+b>的x的取值范圍;

(3)若點P在x軸上,且SACP=SBOC,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮兩人玩石頭、剪刀、布的游戲,游戲規(guī)則為:石頭勝剪刀,剪刀勝布,布勝石頭,相同則不分勝負.

1)請用列表法或畫樹狀圖表示出所有可能出現(xiàn)的游戲結(jié)果;

2)求小明獲勝的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:在數(shù)軸上點A表示數(shù)a,B表示數(shù)b,C表示數(shù)c,a是多項式2x24x+1的一次項系數(shù),b是最小的正整數(shù),單項式x2y4的次數(shù)為c.

(1)a=___b=___,c=___

(2)若將數(shù)軸在點B處折疊,則點A與點C___重合(填“能”或“不能”);

(3)A,B,C開始在數(shù)軸上運動,若點C以每秒1個單位長度的速度向右運動,同時,A和點B分別以每秒3個單位長度和2個單位長度的速度向左運功,t分鐘過后,若點A與點B之間的距離表示為AB,B與點C之間的距離表示為BC,AB=___,BC=___(用含t的代數(shù)式表示)

(4)請問:3ABBC的值是否隨著時間t的變化而改變?若變化,請說明理由;若不變,請求其值。

查看答案和解析>>

同步練習(xí)冊答案