【題目】綜合題:先化簡,再求值
(1)先化簡,再求值:x2﹣(x+2)(2﹣x)﹣2(x﹣5)2 , 其中x=3.
(2)解不等式組 ,并求它的整數(shù)解.
【答案】
(1)解:原式=x2﹣4+x2﹣2x2+20x﹣50=20x﹣54,
把x=3代入得:原式=60﹣54=6;
(2)解: ,
由①得:x<4,
由②得:x≥1,
∴不等式組的解集為1≤x<4,
則不等式組的整數(shù)解為1,2,3.
【解析】(1)原式去括號合并得到最簡結(jié)果,把x的值的值代入計算即可求出值;
(2)根據(jù)一次不等式的解法進行計算求出x的取值范圍后即可得到答案.
【考點精析】利用一元一次不等式組的整數(shù)解和整式加減法則對題目進行判斷即可得到答案,需要熟知使不等式組中的每個不等式都成立的未知數(shù)的值叫不等式組的解,一個不等式組的所有的解組成的集合,叫這個不等式組的解集(簡稱不等式組的解);整式的運算法則:(1)去括號;(2)合并同類項.
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)軸的原點為O,如圖所示,點A表示﹣2,點B表示3,請回答下列問題:
(1)數(shù)軸是什么圖形?數(shù)軸在原點右邊的部分(包括原點)是什么圖形?數(shù)軸上表示不小于﹣2,且不大于3的部分是什么圖形?請你分別給它們?nèi)∫粋合適的名字;
(2)請你在射線AO上再標上一個點C(不與A點重合),那么表示點C的值x的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,AB為⊙O的直徑,PA、PC是⊙O的切線,A、C為切點,∠BAC=30°.
(1)求∠P的大;
(2)若AB=6,求PA的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀填空:請你閱讀芳芳的說理過程并填出理由:
(1)如圖1,已知AB∥CD.
求證:∠BAE+∠DCE=∠AEC.
理由:作EF∥AB,則有EF∥CD()
∴∠1=∠BAE,∠2=∠DCE()
∴∠AEC=∠1+∠2=∠BAE+∠DCE()
思維拓展:
(2)如圖2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直線交于點E,若∠FAE=m°,∠ABC=n°,求∠BED的度數(shù).(用含m、n的式子表示)
(3)將圖2中的線段BC沿DC方向平移,使得點B在點A的右側(cè),其他條件不變,得到圖3,直接寫出∠BED的度數(shù)是(用含m、n的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依次為2、3、4、6,且相鄰兩木條的夾角均可調(diào)整.若調(diào)整木條的夾角時不破壞此木框,則任意兩個螺絲間的距離的最大值為( 。
A.6
B.7
C.8
D.10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M、N,再分別以點M、N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,作射線AB交邊BC于點D,若CD=4,AB=15,則△ABD的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在邊長為1的小正方形組成的正方形網(wǎng)格中建立如圖所示的平面直角坐標系,已知格點三角形ABC(三角形的三個頂點都在小正方形的頂點上).
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)寫出點A和對稱點A1的坐標;
(3)求出△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com