【題目】在平行四邊形中,連接、交于點(diǎn),點(diǎn)為的中點(diǎn),連接并延長交于的延長線于點(diǎn).
(1)求證:為的中點(diǎn);
(2)若,,連接,試判斷四邊形的形狀,并說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一枚正方形骰子的六個面上分別標(biāo)有1~6六個正整數(shù),連續(xù)投擲這枚骰子兩次,朝上的兩個數(shù)依次作為一個點(diǎn)的橫坐標(biāo)、縱坐標(biāo),則這個點(diǎn)落在雙曲線上的概率為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一艘貨輪以36km/h的速度在海面上沿正北方向航行,當(dāng)行駛至A處時,發(fā)現(xiàn)北偏東37°方向有一個燈塔B,貨輪繼續(xù)向北航行20分鐘后到達(dá)C處,發(fā)現(xiàn)燈塔B在它的北偏東67°方向,則此時貨輪與燈塔B的距離為_____km.(結(jié)果精確到0.1,參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75,sin67°≈0.920,cos67°≈0.391,tan67°≈2.356)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,裕安中學(xué)體育訓(xùn)練中,一實(shí)心球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)刻畫,斜坡可以用一次函數(shù)刻畫,實(shí)心球的落點(diǎn)A的坐標(biāo)是().
(1)求二次函數(shù)解析式和二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個水池,其底面是邊長為16尺的正方形,一根蘆葦AB生長在它的正中央,高出水面部分BC的長為2尺,如果把該蘆葦沿與水池邊垂直的方向拉向岸邊,那么蘆葦?shù)捻敳?/span>B恰好碰到岸邊的B′,則這根蘆葦AB的長是( 。
A. 15尺B. 16尺C. 17尺D. 18尺
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,四邊形ABCD是菱形,邊BC在x軸上,點(diǎn)A(0,4),點(diǎn)B(3,0),雙曲線y=與直線BD交于點(diǎn)D、點(diǎn)E.
(1)求k的值;
(2)求直線BD的解析式;
(3)求△CDE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
①ac<0②2a+b=0③4a+2b+c>0④對任意實(shí)數(shù)x均有ax2+bx≥a+b
正確的結(jié)論序號為:______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】怡然美食店的A、B兩種菜品,每份成本均為14元,售價分別為20元、18元,這兩種菜品每天的營業(yè)額共為1120元,總利潤為280元.
(1)該店每天賣出這兩種菜品共多少份?
(2)該店為了增加利潤,準(zhǔn)備降低A種菜品的售價,同時提高B種菜品的售價,售賣時發(fā)現(xiàn),A種菜品售價每降0.5元可多賣1份;B種菜品售價每提高0.5元就少賣1份,如果這兩種菜品每天銷售總份數(shù)不變,那么這兩種菜品一天的總利潤最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=mx(m為常數(shù),且m≠0)與雙曲線y= (k為常數(shù),且k≠0)相交于A(﹣2,6),B兩點(diǎn),過點(diǎn)B作BC⊥x軸于點(diǎn)C,連接AC,則△ABC的面積為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com