【題目】如圖,拋物線交軸于,兩點,交軸于點,連接,點為拋物線上一動點.
(1)求拋物線的解析式;
(2)當點到直線的距離為時,求點的橫坐標;
(3)當和的面積相等時,請直接寫出點的坐標.
【答案】(1);(2)點的橫坐標為或;(3)或或
【解析】
(1)把,代入解析式即可求解; (2)過P作,軸交AB于D,構建直角三角形,利用三角函數(shù)建立與PD的關系即可求解; (3)△ACP和△ABC的面積相等,過作的平行線與拋物線的交點符合題意,再把向上平移兩平行線間的距離得另兩個交點也符合題意,聯(lián)立兩個解析式即可求解.
解:(1)把,代入得
解得:
所以,拋物線的解析式為:
(2)過點作于,過點作軸交直線于,
則,
,
,,
直線的解析式為:
又
設點,
,
,,
當時,解得:,
當,方程無解.
故點的橫坐標為或
(3)如圖,
過B作,則,
,,
所以設 為,把代入得,,
所以:
所以 解得:,
所以.
因為: ,所以,又,
所以,把向上平移4個單位長度得:,
所以 ,解得: ,
所以 ,
所以P的坐標為或或
科目:初中數(shù)學 來源: 題型:
【題目】工人師傅用一塊長為10dm,寬為6dm的矩形鐵皮制作一個無蓋的長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求長方體底面面積為12dm2時,裁掉的正方形邊長多大?
(2)若要求制作的長方體的底面長不大于底面寬的五倍,并將容器進行防銹處理,側面每平方分米的費用為0.5元,底面每平方分米的費用為2元,裁掉的正方形邊長多大時,總費用最低,最低為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,⊙O的半徑為1,點A在x軸的正半軸上,B為⊙O上一點,過點A、B的直線與y軸交于點C,且OA2=ABAC.
(1)求證:直線AB是⊙O的切線;
(2)若AB=,求直線AB對應的函數(shù)表達式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)交x軸于A,B(1,0)兩點,交y軸于點C,一次函數(shù)y=x+3的圖象交坐標軸于A,D兩點,E為直線AD上一點,作EF⊥x軸,交拋物線于點F
(1)求拋物線的解析式;
(2)若點F位于直線AD的下方,請問線段EF是否有最大值?若有,求出最大值并求出點E的坐標;若沒有,請說明理由;
(3)在平面直角坐標系內(nèi)存在點G,使得G,E,D,C為頂點的四邊形為菱形,請直接寫出點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,為的直徑,于,點是弧上的任一點,過點作的切線交于點.連接交于.
(1)求證:;
(2)填空:①當_____時,四邊形是正方形;
②當_____時,四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以點A為中心,把△ABC逆時針旋轉(zhuǎn)120°,得到△AB'C′(點B、C的對應點分別為點B′、C′),連接BB',若AC'∥BB',則∠CAB'的度數(shù)為( 。
A.45°B.60°C.70°D.90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(-4,n)、B(3,4)是一次函數(shù)y1=kx+b的圖象與反比例函數(shù)的圖象的兩個交點,過點D(t,0)(0<t<3)作x軸的垂線,分別交雙曲線和直線y1=kx+b于P、Q兩點
(1) 直接寫出反比例函數(shù)和一次函數(shù)的解析式
(2) 當t為何值時,S△BPQ=S△APQ
(3) 以PQ為邊在直線PQ的右側作正方形PQMN,試說明:邊QM與雙曲線(x>0)始終有交點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年“519(我要走)全國徒步日(江夏站)”暨第六屆“環(huán)江夏”徒步大會5月19日在美麗的花山腳下降重舉行.組委會(活動主辦方)為了獎勵活動中取得了好成績的參賽選手,計劃購買共100件的甲、乙兩種紀念品發(fā)放.其中甲種紀念品每件售價120元,乙種紀念品每件售價80元.
(1)如果購買甲、乙兩種紀念品一共花費了9600元,求購買甲、乙兩種紀念品各是多少件?
(2)設購買甲種紀念品件,如果購買乙種紀念品的件數(shù)不超過甲種紀念品的數(shù)量的2倍,并且總費用不超過9400元.問組委會購買甲、乙兩種紀念品共有幾種方案?哪一種方案所需總費用最少?最少總費用是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠ACB=90°,D是AB邊上一點,以BD為直徑的⊙O與邊AC有公共點E,連結DE并延長,與BC的延長線交于點F ,BD=BF.
(1)求證:AC是⊙O的切線;
(2)若∠F=60°,BF=8,求CF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com