精英家教網 > 初中數學 > 題目詳情
(2009•衢州)如圖,AD是⊙O的直徑.

(1)如圖①,垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則∠B1的度數是______°,∠B2的度數是______°;
(2)如圖②,垂直于AD的三條弦B1C1,B2C2,B3C3把圓周6等分,分別求∠B1,∠B2,∠B3的度數;
(3)如圖③,垂直于AD的n條弦B1C1,B2C2,B3C3,…,BnCn把圓周2n等分,請你用含n的代數式表示∠Bn的度數(只需直接寫出答案).
【答案】分析:根據條件可以先求出圓的各段弧的度數,根據圓周角等于所對弧的度數的一半,就可以求出圓周角的度數.
解答:解:(1)垂直于AD的兩條弦B1C1,B2C2把圓周4等分,則是圓的,因而度數是45°,因而∠B1的度數是22.5°,同理的度數是135度,因而,∠B2的度數是67.5°;(4分)

(2)∵圓周被6等分
===360°÷6=60°(1分)
∵直徑AD⊥B1C1
=30°,
∴∠B1=15°(1分)
∠B2=×(30°+60°)=45°(1分)
∠B3=×(30°+60°+60°)=75°;(1分)

(3)BnCn把圓周2n等分,則弧BnD的度數是:
則∠BnAD=,
在直角△ABnD中,.(4分)
點評:本題是把求圓周角的度數的問題轉化為求弧的度數的問題,依據是圓周角等于所對弧的度數的一半.
練習冊系列答案
相關習題

科目:初中數學 來源:2009年全國中考數學試題匯編《二次函數》(06)(解析版) 題型:解答題

(2009•衢州)如圖,已知點A(-4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應點為A′,點B的對應點為B′,點C(-2,0)和點D(-4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年浙江省舟山市中考數學試卷(解析版) 題型:解答題

(2009•衢州)如圖,已知點A(-4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應點為A′,點B的對應點為B′,點C(-2,0)和點D(-4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009年浙江省衢州市中考數學試卷(解析版) 題型:解答題

(2009•衢州)如圖,已知點A(-4,8)和點B(2,n)在拋物線y=ax2上.
(1)求a的值及點B關于x軸對稱點P的坐標,并在x軸上找一點Q,使得AQ+QB最短,求出點Q的坐標;
(2)平移拋物線y=ax2,記平移后點A的對應點為A′,點B的對應點為B′,點C(-2,0)和點D(-4,0)是x軸上的兩個定點.
①當拋物線向左平移到某個位置時,A′C+CB′最短,求此時拋物線的函數解析式;
②當拋物線向左或向右平移時,是否存在某個位置,使四邊形A′B′CD的周長最短?若存在,求出此時拋物線的函數解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2010年初中數學第一輪復習教學案例.5.3.全等三角形(解析版) 題型:解答題

(2009•衢州)如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點P在矩形上方,點Q在矩形內.
求證:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.

查看答案和解析>>

科目:初中數學 來源:2009年浙江省舟山市中考數學試卷(解析版) 題型:解答題

(2009•衢州)如圖,四邊形ABCD是矩形,△PBC和△QCD都是等邊三角形,且點P在矩形上方,點Q在矩形內.
求證:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.

查看答案和解析>>

同步練習冊答案