【題目】如圖,AC⊥BC,AD⊥DB,下列條件中: ①∠ABD=∠BAC;②∠DAB=∠CBA;③AD=BC;④∠DAC=∠CBD,能使△ABC≌△BAD的有_____(把所有正確結(jié)論的序號(hào)都填在橫線上)
【答案】①②③
【解析】
先得到∠C=∠D=90°,若添加∠ABD=∠BAC,則可根據(jù)“AAS”判斷△ABC≌△BAD;若添加∠DAB=∠CBA,則可先利用“AAS”證明△ABC≌△BAD;若添加AD=BC,則可利用“HL”判斷ABC≌△BAD;若添加∠DAC=∠CBD,則不能判斷ABC≌△BAD.
解:∵AC⊥BC,AD⊥BD,
∴∠C=∠D=90°,
①在△ABC和△BAD中,
,
∴△ABC≌△BAD(AAS),所以①正確;
②在△ABC和△BAD中,
,
∴△ABC≌△BAD(AAS),所以②正確;
③在Rt△ABC和Rt△BAD中
,
∴△ABC≌△BAD(HL),所以③正確;
④∠C=∠D和∠DAC=∠CBD兩個(gè)條件不能判定△ABC≌△DCB,所以④錯(cuò)誤.
所以正確結(jié)論的序號(hào)為①②③,
故答案為①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD、∠ABC的平分線AF、BG分別與線段CD交于點(diǎn)F、G,
AF與BG交于點(diǎn)E.
(1)求證:AF⊥BG,DF=CG;
(2)若AB=10,AD=6,AF=8,求FG和BG的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個(gè),若從中隨機(jī)摸出一個(gè)球,這個(gè)球是白球的概率為.
()請(qǐng)直接寫出袋子中白球的個(gè)數(shù).
()隨機(jī)摸出一個(gè)球后,放回并攪勻,再隨機(jī)摸出一個(gè)球,求兩次都摸到相同顏色的小球的概率.(請(qǐng)結(jié)合樹狀圖或列表解答)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
①-3,9,-27,81,-243,729,…;
②0,12,-24,84,-240,732,…;
③-1,3,-9,27,-81,243,….
(1)第①行數(shù)有什么規(guī)律?
(2)第②行數(shù)與第①行數(shù)有什么關(guān)系?
(3)第③行數(shù)與第①行數(shù)有什么關(guān)系?
(4)取每行數(shù)的第10個(gè)數(shù),計(jì)算這三個(gè)數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知把直線y=kx+b(k≠0)沿著y軸向上平移3個(gè)單位后,得到直線y=﹣2x+5.
(1)求直線y=kx+b(k≠0)的解析式;
(2)求直線y=kx+b(k≠0)與坐標(biāo)軸圍成的三角形的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與x軸相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C(0,4),若已知A點(diǎn)的坐標(biāo)為A(﹣2,0).
(1)求拋物線的解析式;
(2)求△ABC的外接圓圓心坐標(biāo);
(3)在拋物線的對(duì)稱軸上是否存在點(diǎn)Q,使△ACQ為等腰三角形?若存在,求出符合條件的Q點(diǎn)坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,點(diǎn)A(6 ,0),點(diǎn)B(0,18),∠BAO=60°,射線AC平分∠BAO交y軸正半軸于點(diǎn)C.
(1)求點(diǎn)C的坐標(biāo);
(2)點(diǎn)N從點(diǎn)A以每秒2個(gè)單位的速度沿線段AC向終點(diǎn)C運(yùn)動(dòng),過點(diǎn)N作x軸的垂線,分別交線段AB于點(diǎn)M,交線段AO于點(diǎn)P,設(shè)線段MP的長(zhǎng)度為d,點(diǎn)P的運(yùn)動(dòng)時(shí)間為t,請(qǐng)求出d與t的函數(shù)關(guān)系式(直接寫出自變量t的取值范圍);
(3)在(2)的條件下,將△ABO沿y軸翻折,點(diǎn)A落在x軸正半軸上的點(diǎn)E,線段BE交射線AC于點(diǎn)D,點(diǎn)Q為線段OB上的動(dòng)點(diǎn),當(dāng)△AMN與△OQD全等時(shí),求出t值并直接寫出此時(shí)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為災(zāi)區(qū)開展了“獻(xiàn)出我們的愛”賑災(zāi)捐款活動(dòng),九年級(jí)(1)班50名同學(xué)積極參加了這次賑災(zāi)捐款活動(dòng),因不慎,表中數(shù)據(jù)有一處被墨水污染,已無法看清,但已知全班平均每人捐款38元.
捐款(元) | 10 | 15 | 30 | 50 | 60 | |
人數(shù) | 3 | 6 | 11 | 11 | 13 | 6 |
(1)根據(jù)以上信息可知,被污染處的數(shù)據(jù)為 .
(2)該班捐款金額的眾數(shù)為 ,中位數(shù)為 .
(3)如果用九年級(jí)(1)班捐款情況作為一個(gè)樣本,請(qǐng)估計(jì)全校2000人中捐款在40元以上(包括40元)的人數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點(diǎn)H、G分別是邊CD、BC上的動(dòng)點(diǎn).連接AH、HG,點(diǎn)E為AH的中點(diǎn),點(diǎn)F為GH的中點(diǎn),連接EF.則EF的最大值與最小值的差為( )
A. 1 B. ﹣1 C. D. 2﹣
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com