【題目】正方形OABC的邊長為4,對角線相交于點P,拋物線L經(jīng)過O、P、A三點,點E是正方形內(nèi)的拋物線上的動點.

(1)建立適當?shù)钠矫嬷苯亲鴺讼担?/span>
①直接寫出O、P、A三點坐標;
②求拋物線L的解析式;
(2)求△OAE與△OCE面積之和的最大值.

【答案】
(1)

解:以O(shè)點為原點,線段OA所在的直線為x軸,線段OC所在的直線為y軸建立直角坐標系,如圖所示.

①∵正方形OABC的邊長為4,對角線相交于點P,

∴點O的坐標為(0,0),點A的坐標為(4,0),點P的坐標為(2,2).

②設(shè)拋物線L的解析式為y=ax2+bx+c,

∵拋物線L經(jīng)過O、P、A三點,

∴有 ,

解得:

∴拋物線L的解析式為y=﹣ +2x


(2)

解:∵點E是正方形內(nèi)的拋物線上的動點,

∴設(shè)點E的坐標為(m,﹣ +2m)(0<m<4),

∴SOAE+SOCE= OAyE+ OCxE=﹣m2+4m+2m=﹣(m﹣3)2+9,

∴當m=3時,△OAE與△OCE面積之和最大,最大值為9


【解析】(1)以O(shè)點為原點,線段OA所在的直線為x軸,線段OC所在的直線為y軸建立直角坐標系.①根據(jù)正方形的邊長結(jié)合正方形的性質(zhì)即可得出點O、P、A三點的坐標;②設(shè)拋物線L的解析式為y=ax2+bx+c,結(jié)合點O、P、A的坐標利用待定系數(shù)法即可求出拋物線的解析式;(2)由點E為正方形內(nèi)的拋物線上的動點,設(shè)出點E的坐標,結(jié)合三角形的面積公式找出SOAE+SOCE關(guān)于m的函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)即可得出結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】a、b、c三個數(shù)在數(shù)軸上位置如圖所示,且|a|=|b|

(1)求出a、b、c各數(shù)的絕對值;

(2)比較a,﹣a、﹣c的大。

(3)化簡|a+b|+|a﹣b|+|a+c|+|b﹣c|.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.
(1)求∠ABC的度數(shù);
(2)求證:AE是⊙O的切線;
(3)當BC=4時,求劣弧AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法:(1)相反數(shù)是本身的數(shù)是正數(shù);(2)兩數(shù)相減,差小于被減數(shù);(3)絕對值等于它相反數(shù)的數(shù)是負數(shù);(4)倒數(shù)是它本身的數(shù)是1;(5)若,則a=b;(6)沒有最大的正數(shù),但有最大的負整數(shù).其中正確的個數(shù)( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點C是⊙O上一點,連接AC,∠MAC=∠CAB,作CD⊥AM,垂足為D.
(1)求證:CD是⊙O的切線;
(2)若∠ACD=30°,AD=4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某一項工程,在工程招標時,接到甲、乙兩個工程隊的投標書,施工一天,需付甲工程隊工程款1.5萬元,乙工程隊工程款1.1萬元,工程領(lǐng)導小組根據(jù)甲乙兩隊的投標書測算,可有三種施工方案:

(1)甲隊單獨完成這項工程剛好如期完成;

(2)乙隊單獨完成這項工程要比規(guī)定日期多用5天;

(3)若甲、乙兩隊合作4天,余下的工程由乙隊單獨也正好如期完成.

據(jù)上述條件解決下列問題:

規(guī)定期限是多少天?寫出解答過程;

在不耽誤工期的情況下,你覺得那一種施工方案最節(jié)省工程款?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某自行車廠一周計劃生產(chǎn)1 400輛自行車,平均每天生產(chǎn)200輛.由于各種原因,實際上每天的生產(chǎn)量與計劃量相比有出入.表是某周的生產(chǎn)情況(增產(chǎn)為正,減產(chǎn)為負):

星期

增減

+5

﹣2

﹣4

+13

﹣10

+16

﹣9

1)根據(jù)記錄的數(shù)據(jù)可知該廠星期五生產(chǎn)自行車   輛;

2)產(chǎn)量最多的一天比產(chǎn)量最少的一天多生產(chǎn)了   輛自行車;

3)根據(jù)記錄的數(shù)據(jù)可知該廠本周實際生產(chǎn)自行車   輛;

4)該廠實行計件工資制,每生產(chǎn)一輛得60元,超額完成則每輛獎15元,少生產(chǎn)一輛則扣15元,那么該廠工人這一周的工資總額是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設(shè)點Q到圖形W上每一個點的距離的最小值稱為點Q到圖形W的距離.例如正方形ABCD滿足A(1,0),B(2,0),C(2,1),D(1,1),那么點O(0,0)到正方形ABCD的距離為1.
(1)如果⊙P是以(3,4)為圓心,1為半徑的圓,那么點O(0,0)到⊙P的距離為
(2)求點 到直線 的距離;
(3)如果點 到直線 的距離為3,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某運動品牌對第一季度A、B兩款運動鞋的銷售情況進行統(tǒng)計,兩款運動鞋的銷售量及總銷售額如圖10所示:

1)一月份B款運動鞋的銷售量是A款的,則一月份B款運動鞋銷售了多少雙?

2)第一季度這兩款運動鞋的銷售單價保持不變,求三月份的總銷售額(銷售額=銷售單價×銷售量);

3)結(jié)合第一季度的銷售情況,請你對這兩款運動鞋的進貨、銷售等方面提出一條建議。

查看答案和解析>>

同步練習冊答案