如果不論R是何值,x=-1總是關(guān)于x的方程
Rx+a
2
-
2x-bR
3
=1
的解,則a=______,b=______.
∵x=-1總是關(guān)于x的方程的解,
-R+a
2
-
-2-bR
3
=1,
整理得R(2b-3)+(3a-2)=0,
∵不論R是何值,x=-1總是關(guān)于x的方程的解,
∴2b-3=0,3a-2=0,
解得a=
2
3
,b=
3
2

故答案為:a=
2
3
,b=
3
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果不論R是何值,x=-1總是關(guān)于x的方程
Rx+a
2
-
2x-bR
3
=1
的解,則a=
 
,b=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角梯形ABCD中.AB∥CD,AB=12cm,CD=6cm,DA=3cm,∠D=∠A=90°,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始向點(diǎn)B以2cm/s的速度移動(dòng);點(diǎn)Q沿DA邊從點(diǎn)D開(kāi)始向點(diǎn)A以1cm/s的速度移動(dòng),如果P、Q同時(shí)出發(fā),用t表示移動(dòng)的時(shí)間(單位:秒),并且0≤t≤3.
(1)證明不論t取何值,四邊形QAPC的面積是一個(gè)定值,并且求出這個(gè)定值;
(2)請(qǐng)問(wèn)是否存在這樣的t,使得∠PCQ=90°?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由;
(3)請(qǐng)你探究△PBC能否構(gòu)成直角三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黃埔區(qū)一模)已知拋物線(xiàn)L:y=x2-(k-2)x+(k+1)2
(1)證明:不論k取何值,拋物線(xiàn)L的頂點(diǎn)C總在拋物線(xiàn)y=3x2+12x+9上;
(2)已知-4<k<0時(shí),拋物線(xiàn)L和x軸有兩個(gè)不同的交點(diǎn)A、B,求A、B間距取得最大值時(shí)k的值;
(3)在(2)A、B間距取得最大值條件下(點(diǎn)A在點(diǎn)B的右側(cè)),直線(xiàn)y=ax+b是經(jīng)過(guò)點(diǎn)A,且與拋物線(xiàn)L相交于點(diǎn)D的直線(xiàn).問(wèn)是否存在點(diǎn)D,使△ABD為等邊三角形?如果存在,請(qǐng)寫(xiě)出此時(shí)直線(xiàn)AD的解析式;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如果不論R是何值,x=-1總是關(guān)于x的方程數(shù)學(xué)公式的解,則a=________,b=________.

查看答案和解析>>

同步練習(xí)冊(cè)答案