【題目】如圖,點D是△ABC邊BC上一點,AD=BD,且AD平分∠BAC.(1)若∠B=50°,求∠ADC的度數;(2)若∠C=30°,求∠ADC的度數.
【答案】(1)100°;(2)100°.
【解析】試題分析:(1)由AD=BD可得∠B=∠BAD=50°,進而得出∠ADC=∠B+∠BAD=100°;(2)設∠B=∠BAD=x,則∠ADC=2x,由AD平分∠BAC可得∠BAD=∠DAC=x,又因為∠C=30°,故根據三角形內角和為180°可列方程x+2x+30=180,解得x=50,所以∠ADC=100°.
試題解析:
(1)∵AD=BD,
∴∠B=∠BAD=50°,
∴∠ADC=∠B+∠BAD=100°;
(2)設∠B=∠BAD=x,則∠ADC=2x,
∵AD平分∠BAC,
∴∠BAD=∠DAC=x,
∵∠C=30°,
∴x+2x+30=180,解得x=50,
∴∠ADC=100°.
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD中,E、F分別是邊AD、CD上的點,AE=ED,DF=DC,連接EF并延長交BC的延長線于點G。
(1)求證:△ABE∽△DEF;
(2)若正方形的邊長為4,求BG的長。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,點C在x軸上,反比例函數y=(x>0)的圖象經過點A(5,12),且與邊BC交于點D.若AB=BD,則點D的坐標為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解學生的課外閱讀情況,隨機抽取了50名學生,并統(tǒng)計他們平均每天的課外閱讀時間t(單位:min),然后利用所得數據繪制成如下不完整的統(tǒng)計表.
課外閱讀時間t | 頻數 | 百分比 |
10≤t<30 | 4 | 8% |
30≤t<50 | 8 | 16% |
50≤t<70 | a | 40% |
70≤t<90 | 16 | b |
90≤t<110 | 2 | 4% |
合計 | 50 | 100% |
請根據圖表中提供的信息回答下列問題:
(1)a= ,b= ;
(2)將頻數分布直方圖補充完整;
(3)若全校有900名學生,估計該校有多少學生平均每天的課外閱讀時間不少于50min?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O是等邊△ABC內一點,∠AOB=110°,∠BOC=a,以OC為一邊作等邊△OCD,連接AD.
(1)求證:△BOC≌△ADC;
(2)當OA=OD時,求a的值
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一幅透明的直角三角尺,按如圖所示的位置擺放.如果把三角尺的每條邊看成線段,請根據圖形解答下列問題:
(1)找出圖中一對互相平行的線段,并用符號表示出來;
(2)找出圖中一對互相垂直的線段,并用符號表示出來;
(3)找出圖中的一個鈍角、一個直角和一個銳角,用符號把它們表示出來,并求出它們的度數.(不包括直角尺自身所成的角)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某中學七、八年級各選派10名選手參加知識競賽,計分采用10分制,選手得分均為整數,成績達到6分或6分以上為合格,達到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分選手人數分別為a,b.
(1)請依據圖表中的數據,求a,b的值.
(2)直接寫出表中的m= ,n= .
(3)有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好.請你給出兩條支持八年級隊成績好的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖-1,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD,BE的延長線交AD于F.
(1)猜想線段BE,AD的數量關系和位置關系:________________________(不必證明);
(2)當點E為△ABC內部一點時,使點D和點E分別在AC的兩側,其它條件不變.
① 請你在圖-2中補全圖形;
②(1)中結論成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com