【題目】四個形狀大小相同的等腰三角形按如圖所示方式擺放,已知,,若點落在的延長線上,則圖中陰影部分的面積為( )
A.B.C.D.
【答案】A
【解析】
利用已知條件判定菱形,然后由四邊形OHGK是平行四邊形得OK=2,再由相似三角形,利用相似比求得OB,即可得其面積.
連接EF、GF,將△OHC沿點O順時針旋轉(zhuǎn)180°,如圖所示:
由題意,得OB=OC=OA,∠EAO=∠AOF=∠FAO=∠AOE,GH⊥BO
∴AE∥FO,AF∥EO,GH∥OA
∴四邊形AEOF為平行四邊形
∴AE=EO
∴四邊形AEOF為菱形
∴OH∥BF
∴四邊形OHGK為平行四邊形
∴OK=2
∵
∴△ABC為等腰三角形
∴∠GOF=90°,OG=OF
設四個相同的等腰三角形的腰長為
∵∠KOF=∠OBF,∠OFB=∠KFO
∴△OFB∽△KFO
∴即
∴
∴陰影部分的面積為
故選:A.
科目:初中數(shù)學 來源: 題型:
【題目】如果拋物線y=ax2+bx+c過定點M(1,0),則稱此拋物線為定點拋物線.
(1)張老師在投影屏幕上出示了一個題目:請你寫出一條定點拋物線的解析式.小敏寫出了一個正確的答案:y=2x2+3x-5.請你寫出一個不同于小敏的答案;
(2)張老師又在投影屏幕上出示了一個思考題:已知定點拋物線y=-x2+2bx+c,求該拋物線的頂點最低時的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于、兩點,與軸交于點,點的坐標為,且當和時二次函數(shù)的函數(shù)值相等.
()求實數(shù)、的值.
()如圖,動點、同時從點出發(fā),其中點以每秒個單位長度的速度沿邊向終點運動,點以每秒個單位長度的速度沿射線方向運動,當點停止運動時,點隨之停止運動.設運動時間為秒.連接,將沿翻折,使點落在點處,得到.
①是否存在某一時刻,使得為直角三角形?若存在,求出的值;若不存在,請說明理由.
②設與重疊部分的面積為,求關于的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,剪兩張對邊平行且寬度相等的紙條隨意交叉疊放在一起,轉(zhuǎn)動其中一張,重合部分構(gòu)成一個四邊形,則下列結(jié)論中不一定成立的是( 。
A. ∠ABC=∠ADC,∠BAD=∠BCD B. AB=BC
C. AB=CD,AD=BC D. ∠DAB+∠BCD=180°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例y=的圖象與一次函數(shù)y=kx﹣3的圖象在第一象限內(nèi)交于A(4,a).
(1)求一次函數(shù)的解析式;
(2)若直線x=n(0<n<4)與反比例函數(shù)和一次函數(shù)的圖象分別交于點B,C,連接AB,若△ABC是等腰直角三角形,求n的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小迪同學在學勾股定理時發(fā)現(xiàn)一類特殊三角形:在一個三角形中,如果一個角是另一個角的2倍,那么稱這個三角形為“倍角三角形”.
如圖1,在倍角中,,、、的對邊分別記為,,,三角形的三邊,,有什么關系呢?讓我們一起來探索……
(1)已知“倍角三角形”的一個內(nèi)角為,則這個三角形的另兩個角的度數(shù)分別為______
(2)小迪同學先從特殊的“倍角三角形”入手研究,請你結(jié)合圖2和圖3填寫下表:
三角形 | 角的已知量 | ||
圖2 | ______ | ______ | |
圖3 | ______ |
小迪同學根據(jù)上表,提出一般性猜想:在“倍角三角形”中,,那么,,三邊滿足:______;
(3)如圖1:在倍角三角形中,,、、的對邊分別記為,,,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,已知,與相交于點,與相交于點,與相交于點.
(1)如圖,觀察并猜想和有怎樣的數(shù)量關系?并說明理由.
(2)箏形的定義:兩組鄰邊分別相等的四邊形叫做箏形. 如上圖,證明四邊形是箏形.
(3)如圖,若,其他條件不變,求的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點在拋物線上.
若,,求的值;
若此拋物線經(jīng)過點,且二次函數(shù)的最小值是,請畫出點的縱坐標隨橫坐標變化的圖象,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com