【題目】如圖,在△ABC中,∠B=90°,AB=3,BC=2,點O在AC邊上,⊙O與AB、BC分別切于點D、E,則⊙O的半徑長為 .
【答案】
【解析】解:
連接OE、OD,
∵⊙O與AB、BC分別切于點D、E,∠B=90°,
∴∠OEC=∠ODA=90°,∠ODB=∠B=∠OEB=90°,
∵OD=OE,
∴四邊形OEBD是正方形,
∴OE=OD=DB=BE,
設(shè)OE=OD=DB=BE=R,
∵四邊形OEBD是正方形,
∴OE∥AB,
∴∠COE=∠A,
∵∠OEC=∠ODA=90°,
∴△OEC∽△ADO,
∴ = ,
∴ = ,
解得:R= ,
所以答案是: .
【考點精析】利用切線的性質(zhì)定理和相似三角形的判定與性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“漢十”高速鐵路襄陽段正在建設(shè)中,甲、乙兩個工程隊計劃參與一項工程建設(shè),甲隊單獨施工30天完成該項工程的 ,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.
(1)若乙隊單獨施工,需要多少天才能完成該項工程?
(2)若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,且DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數(shù);
(2)若CD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD中繞點A逆時針旋轉(zhuǎn)30°得到正方形AB′C′D′,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣為了落實中央的“強(qiáng)基惠民工程”,計劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊單獨施工恰好在規(guī)定時間內(nèi)完成;若乙隊單獨施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的1.5倍.如果由甲、乙隊先合做15天,那么余下的工程由甲隊單獨完成還需5天.
(1)這項工程的規(guī)定時間是多少天?
(2)已知甲隊每天的施工費用為6500元,乙隊每天的施工費用為3500元.為了縮短工期以減少對居民用水的影響,工程指揮部最終決定該工程由甲、乙隊合做來完成.則該工程施工費用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點分別在直線上,點為兩平行線內(nèi)部一點
(1)如圖1,角平分線交于點N,若等于,求的度數(shù)
(2)如圖2,點G為直線上一點,且,延長GM交直線AB于點Q,點P為MG上一點,射線相交于點H,滿足,設(shè),求的度數(shù)(用的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①②,的兩邊分別平行.
(1)在圖①中,與有什么數(shù)量關(guān)系?為什么?
(2)在圖②中,與有什么數(shù)量關(guān)系?為什么?
(3)由(1)(2)你能得出什么結(jié)論?用一句話概括你得到的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把Rt△ABC放在直角坐標(biāo)系內(nèi),其中∠CAB=90°,BC=5,點A,B的坐標(biāo)分別為(1,0)、(4,0).將△ABC沿x軸向右平移,當(dāng)點C落在直線y=2x﹣6上時,線段BC掃過的面積為( )
A.4
B.8
C.16
D.8
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形紙片ABCD按如圖所示的方式折疊,AE、EF為折痕,∠BAE=30°,AB= ,折疊后,點C落在AD邊上的C1處,并且點B落在EC1邊上的B1處.則BC的長為( )
A.
B.2
C.3
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com