【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(3,0),⊙P是以點(diǎn)P為圓心,2為半徑的圓,若一次函數(shù)y=kx+b的圖象過點(diǎn)A(﹣1,0)且與⊙P相切,則k+b的值為 .
【答案】±
【解析】解:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:
當(dāng)直線AB與圓P相切,設(shè)切點(diǎn)為B點(diǎn),且切點(diǎn)B在第一象限時,
連接PB,由AB為圓P的切線,得到BP⊥AB,
又∵A(﹣1,0),P(3,0),
∴OA=1,OP=3,又BP=2,
則AP=OA+OP=1+3=4,
在Rt△ABP中,BP= AP,
可得出∠BAP=30°,
在Rt△ACO中,OA=1,∠BAP=30°,
∴tan∠BAP=tan30°= =OC,
∴OC= ,即C(0, ),
設(shè)直線AC的解析式為y=kx+b,將A和C的坐標(biāo)代入得:
,
解得: ,
∴k+b= ;
當(dāng)直線AB與圓P相切時,切點(diǎn)B在第四象限時,同理得到k=b=﹣ ,
可得k+b=﹣ ,
綜上,k+b=± .
所以答案是:± .
【考點(diǎn)精析】關(guān)于本題考查的確定一次函數(shù)的表達(dá)式和切線的性質(zhì)定理,需要了解確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;切線的性質(zhì):1、經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點(diǎn)的半徑才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】看圖說故事. 請你編寫一個故事,使故事情境中出現(xiàn)的一對變量x、y滿足圖示的函數(shù)關(guān)系,要求:
(1)指出變量x和y的含義;
(2)利用圖中的數(shù)據(jù)說明這對變量變化過程的實際意義,其中須涉及“速度”這個量.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,射線OA、BA分別表示甲、乙兩人騎自行車運(yùn)動過程的一次函數(shù)的圖象,圖中s、t分別表示行駛距離和時間,則這兩人騎自行車的速度相差km/h.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家和地方政府為了提高農(nóng)民種糧的積極性,每畝地每年發(fā)放種糧補(bǔ)貼120元.種糧大戶老王今年種了150畝地,計劃明年再承租50~150畝土地種糧以增加收入,考慮各種因素,預(yù)計明年每畝種糧成本y(元)與種糧面積x(畝)之間的函數(shù)關(guān)系如圖所示:
(1)今年老王種糧可獲得補(bǔ)貼多少元?
(2)根據(jù)圖象,求y與x之間的函數(shù)關(guān)系式;
(3)若明年每畝的售糧收入能達(dá)到2140元,求老王明年種糧總收入W(元)與種糧面積x(畝)之間的函數(shù)關(guān)系式.當(dāng)種糧面積為多少畝時,總收入最高?并求出最高總收入.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,對角線AC的中點(diǎn)為O,過點(diǎn)O作AC的垂線分別與AD、BC相交于點(diǎn)E、F,連接AF.求證:AE=AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期六,小亮從家里騎自行車到同學(xué)家去玩,然后返回,圖是他離家的路程y(千米)與時間x(分鐘)的函數(shù)圖象,根據(jù)圖象信息,下列說法不一定正確的是( )
A.小亮到同學(xué)家的路程是3千米
B.小亮在同學(xué)家逗留的時間是1小時
C.小亮去時走上坡路,回家時走下坡路
D.小亮回家時用的時間比去時用的時間少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣6,0)、B(﹣2,3)、
C(﹣1,0).
(1)請直接寫出與點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O的對稱點(diǎn)B1的坐標(biāo);
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時針旋轉(zhuǎn)90°.畫出對應(yīng)的△A′B′C′圖形,直接寫出點(diǎn)A的對應(yīng)點(diǎn)A′的坐標(biāo);
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點(diǎn)D′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過正方形ABCD頂點(diǎn)B,C的⊙O與AD相切于點(diǎn)P,與AB,CD分別相交于點(diǎn)E,F(xiàn),連接EF.
(1)求證:PF平分∠BFD;
(2)若tan∠FBC= ,DF= ,求EF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com