【題目】如圖,△ABC內(nèi)接于⊙O,OD⊥BCD,∠OCD=40°,則弦BC所對圓周角的度數(shù)是(  )

A. 40° B. 50° C. 50°130° D. 40°140°

【答案】C

【解析】

由條件可求得BOC=100°,可求得BAC=BOC=50°,在劣弧BC上找點E,連接BE、CE,利用圓內(nèi)接四邊形的性質(zhì)可求得BEC=130°,故弦BC所對的圓周角的度數(shù)為50°130°.

連接OB,

ODBCD,∠OCD=40°,

∴∠DOC=50°,

OB=OD,∴∠OBD=40°,可求得∠BOD=50°,

∴∠BOC=100°,

∴∠BAC=BOC=50°,

在劣弧BC上找點E,連接BE、CE,則∠BEC+∠BAC=180°,

∴∠BEC=130°,

即弦BC所對的圓周角的度數(shù)為50°或130°,

故選:C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(探究與證明)

在正方形ABCD中,G是射線AC上一動點(不與點A、C重合),連BG,作BHBG,且使BHBG,連GH、CH

1)若GAC上(如圖1),則:①圖中與△ABG全等的三角形是   

②線段AG、CG、GH之間的數(shù)量關(guān)系是   

2)若GAC的延長線上(如圖2),那么線段AG、CG、BG之間有怎樣的數(shù)量關(guān)系?寫出結(jié)論并給出證明;

(應(yīng)用)(3)如圖3,G在正方形ABCD的對角線CA的延長線上,以BG為邊作正方形BGMN,若AG2AD4,請直接寫出正方形BGMN的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,所有正方形的中心均在坐標(biāo)原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依次為24,6,8…頂點依次用A1,A2,A3,A4表示,則頂點A2019的坐標(biāo)是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高學(xué)生書寫漢字的能力,增強(qiáng)保護(hù)漢字的意識,我市舉辦了首屆漢字聽寫大賽,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時聽寫50個漢字,若每正確聽寫出一個漢字得1分,根據(jù)測試成績繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表:

組別

成績x

頻數(shù)(人數(shù))

1

25≤x<30

4

2

30≤x<35

8

3

35≤x<40

16

4

40≤x<45

a

5

45≤x<50

10

請結(jié)合圖表完成下列各題:

(1)求表中a的值;

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)若測試成績不低于40分為優(yōu)秀,則本次測試的優(yōu)秀率是多少?

(4)第510名同學(xué)中,有4名男同學(xué),現(xiàn)將這10名同學(xué)平均分成兩組進(jìn)行對抗練習(xí),且4名男同學(xué)每組分兩人,求小宇與小強(qiáng)兩名男同學(xué)能分在同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸交于A,B兩點(點A在點B的左側(cè)),與y軸交于點C,點A的坐標(biāo)為(﹣1,0),且OC=OB,tan∠OAC=4.

(1)求拋物線的解析式;

(2)若點D和點C關(guān)于拋物線的對稱軸對稱,直線AD下方的拋物線上有一點P,過點P作PHAD于點H,作PM平行于y軸交直線AD于點M,交x軸于點E,求PHM的周長的最大值.

(3)在(2)的條件下,如圖2,在直線EP的右側(cè)、x軸下方的拋物線上是否存在點N,過點N作NGx軸交x軸于點G,使得以點E、N、G為頂點的三角形與AOC相似?如果存在,請直接寫出點G的坐標(biāo):如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知有兩輛玩具車進(jìn)行30米的直跑道比賽,兩車從起點同時出發(fā),A車到達(dá)終點時,B車離終點還差12米,A車的平均速度為2.5/秒.

1)求B車的平均速度;

2)如果兩車重新比賽,A車從起點退后12米,兩車能否同時到達(dá)終點?請說明理由;

3)在(2)的條件下,若調(diào)整A車的平均速度,使兩車恰好同時到達(dá)終點,求調(diào)整后A車的平均速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠A=50°,BD,CE是∠ABC,∠ACB的平分線,則∠BOC的度數(shù)為( 。

A.105°B.115°C.125°D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CACB,CDCEACBDCEα,AD、BE交于點H,連接CH.

(1)求證:ACD≌△BCE;

(2)求證:CH平分∠AHE;

(3)求∠CHE的度數(shù).(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,按如下步驟作圖:

1)分別以、為圓心,以大于的長為半徑在兩邊作弧,交于兩點;

2)經(jīng)過作直線,分別交于點、

3)過點于點,連接、

則下列結(jié)論:①垂直平分;②;③平分;④四邊形是菱形;⑤四邊形是菱形.其中一定正確的是______(填序號).

查看答案和解析>>

同步練習(xí)冊答案