【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x2經(jīng)過平移得到拋物線y=x2﹣2x,其對稱軸與兩拋物線所圍成的陰影部分的面積是__________

【答案】1

【解析】先利用配方法得到拋物線y=x2-2x的頂點(diǎn)坐標(biāo)為(1,-1),則拋物線y=x2向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線y=x2-2x,然后利用陰影部分的面積等于三角形面積進(jìn)行計(jì)算.

解:y=x2-2x=(x-1)2-1,即平移后拋物線的頂點(diǎn)坐標(biāo)為(1,-1),
所以拋物線y=x2向右平移1個(gè)單位,向下平移1個(gè)單位得到拋物線y=x2-2x,
所以對稱軸與兩拋物線所圍成的陰影部分的面積=×1×2=1.
故答案為1.

“點(diǎn)睛”本題考查了二次函數(shù)圖象與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通?衫脙煞N方法:一是求出原拋物線上任意兩點(diǎn)平移后的坐標(biāo),利用待定系數(shù)法求出解析式;二是只考慮平移后的頂點(diǎn)坐標(biāo),即可求出解析式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A地將一批物品運(yùn)往B地,再返回A地,圖6表示兩車離A地的距離s(千米)隨時(shí)間t(小時(shí))變化的圖象,已知乙車到達(dá)B地后以30千米/小時(shí)的速度返回.請根據(jù)圖象中的數(shù)據(jù)回答:

(1)甲車出發(fā)多長時(shí)間后被乙車追上?
(2)甲車與乙車在距離A地多遠(yuǎn)處迎面相遇?
(3)甲車從B地返回的速度多大時(shí),才能比乙車先回到A地?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,兩個(gè)邊長分別為a,b(a>b)的正方形連在一起,三點(diǎn)C,B,F(xiàn)在同一直線上,反比例函數(shù)y=在第一象限的圖象經(jīng)過小正方形右下頂點(diǎn)E.若OB2﹣BE2=10,則k的值是(  )

A. 3 B. 4 C. 5 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=ax2+bx+ca≠0),有下列四個(gè)結(jié)論:①abc0;4a+2b+c0;3a+c0;a+b≥mam+b),其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次越野跑中,當(dāng)李明跑了1600米時(shí),小剛跑了1450米,此后兩人勻速跑的路程s(米)與時(shí)間t(秒)的關(guān)系如圖,結(jié)合圖象解答下列問題:Ⅰ.請你根據(jù)圖象寫出二條信息;Ⅱ.求圖中S1和S0的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若5x=16與5y=2,則5x﹣2y=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x(1≤x≤90)天的售價(jià)與銷量的相關(guān)信息如下表:

時(shí)間x(天)

1≤x<50

50≤x≤90

售價(jià)(元/件)

x+40

90

每天銷量(件)

200-2x

已知該商品的進(jìn)價(jià)為每件30元,設(shè)銷售該商品每天的利潤為y元。

(1)求出y與x的函數(shù)關(guān)系式;

(2)問銷售該商品第幾天時(shí),當(dāng)天的銷售利潤最大?最大利潤是多少?

(3)該商品在銷售過程中,共有多少天每天的銷售利潤不低于4800元?請直接寫出結(jié)果。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,BC=10,∠B=60°,∠C=45°,則點(diǎn)A到BC的距離是( )

A.10﹣5
B.5+5
C.15﹣5
D.15﹣10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ab,則1a________1b. (填“>”,“<”或“=”)

查看答案和解析>>

同步練習(xí)冊答案