已知在△ABC中,AB=AC=5cm,BC=,那么∠A=  ▲  度.
120
根據(jù)等腰三角形三線合一的性質(zhì),作AD⊥BC,可得BD=DC,運(yùn)用特殊角的三角函數(shù)值可求∠BAC的度數(shù),即可求解.
解:作AD⊥BC于D,

∵AB=AC=5cm,底邊BC=5cm,
∴AD是∠A的平分線,BD=DC=BC=
∴Sin∠BAD=
∴∠BAD=60°,
∴∠BAC=120°.
故答案為:120.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,∠C=90°,若將各邊長度都擴(kuò)大為原來的3倍,則∠A的正弦值(   )
A.不變B.縮小3倍C.?dāng)U大3倍D.?dāng)U大9倍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),由直角三角形邊角關(guān)系,可將三角形面積公式變形,
即: =AB·CD,

在Rt中,,

=bc·sin∠A.
即 三角形的面積等于兩邊之長與夾角正弦之積的一半.
如圖(2),在ABC中,CD⊥AB于D,∠ACD=α, ∠DCB=β.
, 由公式①,得
AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ,
即 AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ
請(qǐng)你利用直角三角形邊角關(guān)系,消去②中的AC、BC、CD,只用的正弦或余弦函數(shù)表示(直接寫出結(jié)果).
小題1:(1)______________________________________________________________
小題2:(2)利用這個(gè)結(jié)果計(jì)算:=_________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在高樓AB前D點(diǎn)測(cè)得樓頂A的仰角為30°,向高樓前進(jìn)60米到達(dá)C點(diǎn)處,又測(cè)得仰角為45°,求高樓的高度為多少?(結(jié)果精確到0.1米,≈1.414,≈1.732)(7分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

直升飛機(jī)在離地面2000米的上空測(cè)得上海東方明珠底部的俯角為,此時(shí)直升飛機(jī)與上海東方明珠底部之間的距離是……………………………………………………( 。
A.米;B.米;C.米;D.米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在Rt△ABC中,∠C=90°,若sinA,則∠A=__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是河堤的橫斷面,堤高BC=5米,迎水坡AB的坡比1:(坡比是坡面的鉛直高度BC與水平寬度AC之比),則AC的長是           米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在一個(gè)坡角為20º的斜坡上方有一棵樹,高為AB,當(dāng)太陽光線與水平線成52º角時(shí),測(cè)得該樹在斜坡上的樹影BC的長為10m,求樹高AB(精確到0.1m).
(已知:sin20º≈0.342,cos20º≈0.940,tan20º≈0.364,sin52º≈0.788,cos52º≈0.616,tan52º≈1.280)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分8分)先閱讀讀短文,再解答短文后面的問題:
在幾何學(xué)中,通常用點(diǎn)表示位置,用線段的長度表示兩點(diǎn)間的距離,用一條射線表示一個(gè)方向。在線段的兩個(gè)端點(diǎn)中(如圖),如果我們規(guī)定一個(gè)順序:為始點(diǎn),為終點(diǎn),我們就說線段具有射線的方向,線段叫做有向線段,記作,線段的長度叫做有向線段的長度(或模),記作。
有向線段包含三個(gè)要素:始點(diǎn)、方向和長度,知道了有向線段的始點(diǎn),它的終點(diǎn)就被方向和長度一確定。解答下列問題:

小題1:(1)在平面直角坐標(biāo)系中畫出有向線段(有向線段與軸的長度單位相同),,軸的正半軸的夾角是,且與軸的正半軸的夾角是;
小題2:(2)若的終點(diǎn)的坐標(biāo)為(3,),求它的模及它與軸的正半軸的夾角 的度數(shù)。

查看答案和解析>>

同步練習(xí)冊(cè)答案