【題目】如圖,在四邊形ABCD中,AB∥CD,∠B=90°,AB=AD=5,BC=4,M、N、E分別是AB、AD、CB上的點(diǎn),AM=CE=1,AN=3,點(diǎn)P從點(diǎn)M出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿折線MB﹣BE向點(diǎn)E運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)N出發(fā),以相同的速度沿折線ND﹣DC﹣CE向點(diǎn)E運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)后,另一個(gè)點(diǎn)也停止運(yùn)動(dòng).設(shè)△APQ的面積為S,運(yùn)動(dòng)時(shí)間為t秒,則S與t函數(shù)關(guān)系的大致圖象為( )

A.
B.
C.
D.

【答案】D
【解析】解:∵AD=5,AN=3,
∴DN=2,
如圖1,過(guò)點(diǎn)D作DF⊥AB,
∴DF=BC=4,
在RT△ADF中,AD=5,DF=4,根據(jù)勾股定理得,AF= =3,
∴BF=CD=2,當(dāng)點(diǎn)Q到點(diǎn)D時(shí)用了2s,
∴點(diǎn)P也運(yùn)動(dòng)2s,
∴AP=3,即QP⊥AB,
∴只分三種情況:
①當(dāng)0<t≤2時(shí),如圖1,

過(guò)Q作QG⊥AB,過(guò)點(diǎn)D作DF⊥AB,QG∥DF,
,
由題意得,NQ=t,MP=t,
∵AM=1,AN=3,
∴AQ=t+3,
,
∴QG= (t+3),
∵AP=t+1,
∴S=SAPQ= AP×QG= ×(t+1)× (t+3)= (t+2)2 ,
當(dāng)t=2時(shí),S=6,
②當(dāng)2<t≤4時(shí),如圖2,

∵AP=AM+t=1+t,
∴S=SAPQ= AP×BC= (1+t)×4=2(t+1)=2t+2,
當(dāng)t=4時(shí),S=8,
③當(dāng)4<t≤5時(shí),如圖3,

由題意得CQ=t﹣4,PB=t+AM﹣AB=t+1﹣5=t﹣4,
∴PQ=BC﹣CQ﹣PB=4﹣(t﹣4)﹣(t﹣4)=12﹣2t,
∴S=SAPQ= PQ×AB= ×(12﹣2t)×5=﹣5t+50,
當(dāng)t=5時(shí),S=5,
∴S與t的函數(shù)關(guān)系式分別是①S=SAPQ= (t+2)2 ,當(dāng)t=2時(shí),S=6,②S=SAPQ=2t+2,當(dāng)t=4時(shí),S=8,③∴S=SAPQ=﹣5t+50,當(dāng)t=5時(shí),S=5,
綜合以上三種情況,D正確
故選D.
【考點(diǎn)精析】本題主要考查了三角形的面積和矩形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握三角形的面積=1/2×底×高;矩形的四個(gè)角都是直角,矩形的對(duì)角線相等才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,DBC上任意一點(diǎn),過(guò)點(diǎn)D分別向AB、AC引垂線,垂足分別為點(diǎn)E、F.

(1)如圖①,當(dāng)點(diǎn)DBC的什么位置時(shí),DE=DF?并證明;

(2)在滿足第一問(wèn)的條件下,連接AD,此時(shí)圖中共有幾對(duì)全等三角形?請(qǐng)寫出所有的全等三角形(不必證明);

(3)如圖②,過(guò)點(diǎn)CAB邊上的高CG,請(qǐng)問(wèn)DE、DF、CG的長(zhǎng)之間存在怎樣的等量關(guān)系?并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=﹣ 與x軸、y軸分別交于點(diǎn)A、B;點(diǎn)Q是以C(0,﹣1)為圓心、1為半徑的圓上一動(dòng)點(diǎn),過(guò)Q點(diǎn)的切線交線段AB于點(diǎn)P,則線段PQ的最小是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,拋物線y=﹣ [(x﹣2)2+n]與x軸交于點(diǎn)A(m﹣2,0)和B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連結(jié)BC.

(1)求m、n的值;
(2)如圖2,點(diǎn)N為拋物線上的一動(dòng)點(diǎn),且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點(diǎn)M、P分別為線段BC和線段OB上的動(dòng)點(diǎn),連接PM、PC,是否存在這樣的點(diǎn)P,使△PCM為等腰三角形,△PMB為直角三角形同時(shí)成立?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】RtABC中,AB=AC,BAC=90°,OBC的中點(diǎn)。

(1)寫出點(diǎn)OABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說(shuō)明理由;

(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷OMN的形狀,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課間,小明拿著老師的等腰三角板玩,不小心掉到兩墻之間,如圖.

(1)求證:△ADC≌△CEB;

(2)從三角板的刻度可知AC=25cm,請(qǐng)你幫小明求出砌墻磚塊的厚度a的大。繅K磚的厚度相等).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)了圖形的旋轉(zhuǎn)知識(shí)后,數(shù)學(xué)興趣小組的同學(xué)們又進(jìn)一步對(duì)圖形旋轉(zhuǎn)前后的線段之間、角之間的關(guān)系進(jìn)行了探究.

(一)嘗試探究
如圖1,在四邊形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC=90°,點(diǎn)E、F分別在線段BC、CD上,∠EAF=30°,連接EF.
(1)如圖2,將△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到△A′B′E′(A′B′與AD重合),請(qǐng)直接寫出∠E′AF=度,線段BE、EF、FD之間的數(shù)量關(guān)系為
(2)如圖3,當(dāng)點(diǎn)E、F分別在線段BC、CD的延長(zhǎng)線上時(shí),其他條件不變,請(qǐng)?zhí)骄烤段BE、EF、FD之間的數(shù)量關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,,把繞著點(diǎn)逆時(shí)針旋轉(zhuǎn),得到,點(diǎn).

1)若,求得度數(shù);

2)若,求邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)E、F在四邊形ABCD的對(duì)角線BD所在的直線上,且BE=DF,AECF,請(qǐng)?jiān)偬砑右粋(gè)條件(不要在圖中再增加其它線段和字母),能證明四邊形ABCD是平行四邊形,并證明你的想法.

你所添加的條件:____________________________________;

證明:

查看答案和解析>>

同步練習(xí)冊(cè)答案