【題目】如圖,在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,點(diǎn)M是AD邊的中點(diǎn),點(diǎn)N是AB邊上一動(dòng)點(diǎn),將△AMN沿MN所在的直線翻折得到△A’MN,連結(jié)A’C,則A’C長(zhǎng)度的最小值是( ).
A.B.C.D.2
【答案】B
【解析】
根據(jù)題意,在N的運(yùn)動(dòng)過程中A′在以M為圓心、AD為直徑的圓上的弧AD上運(yùn)動(dòng),當(dāng)A′C取最小值時(shí),由兩點(diǎn)之間線段最短知此時(shí)M、A′、C三點(diǎn)共線,得出A′的位置,進(jìn)而利用銳角三角函數(shù)關(guān)系求出A′C的長(zhǎng)即可.
如圖所示:
∵MA′是定值,A′C長(zhǎng)度取最小值時(shí),即A′在MC上時(shí),
過點(diǎn)M作MF⊥DC于點(diǎn)F,
∵在邊長(zhǎng)為2的菱形ABCD中,∠A=60°,M為AD中點(diǎn),
∴2MD=AD=CD=2,∠FDM=60°,
∴∠FMD=30°,
∴FD=MD=,
∴FM=DM×cos30°=,
∴MC=,
∴A′C=MC-MA′=-1.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八個(gè)邊長(zhǎng)為1的正方形如圖擺放在平面直角坐標(biāo)系中,經(jīng)過原點(diǎn)的一條直線將這八個(gè)正方形分成面積相等的兩部分,則該直線的解析式為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某駐村扶貧小組實(shí)施產(chǎn)業(yè)扶貧,幫助貧困農(nóng)戶進(jìn)行西瓜種植和銷售.已知西瓜的成本為6元/千克,規(guī)定銷售單價(jià)不低于成本,又不高于成本的兩倍.經(jīng)過市場(chǎng)調(diào)查發(fā)現(xiàn),某天西瓜的銷售量(千克)與銷售單價(jià)(元/千克)的函數(shù)關(guān)系如圖所示:
(1)求與的函數(shù)解析式;
(2)求當(dāng)時(shí)銷售西瓜獲得的利潤(rùn)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形 ABCD 中,AE,DF 分別是∠BAD,∠ADC 的平分線,且 AE⊥DF 于點(diǎn) O . 延長(zhǎng) DF 交 AB 的延長(zhǎng)線于點(diǎn) M .
(1)求證:AB∥DC ;
(2)若∠MBC=120°,∠BAD=108°,求∠C,∠DFE 的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=AC.
(1)求∠CDE的度數(shù);
(2)若點(diǎn)M在DE上,且DC=DM,求證:ME=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn) P 是∠AOB 內(nèi)部一定點(diǎn)
(1)若∠AOB=50°,作點(diǎn) P 關(guān)于 OA 的對(duì)稱點(diǎn) P1,作點(diǎn) P 關(guān)于 OB 的對(duì)稱點(diǎn) P2,連 OP1、OP2,則∠P1OP2=___.
(2)若∠AOB=α,點(diǎn) C、D 分別在射線 OA、OB 上移動(dòng),當(dāng)△PCD 的周長(zhǎng)最小時(shí),則∠CPD=___(用 α 的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=34°,∠ACB=104°,AD是BC邊上的高,AE是∠BAC的角平分線,則∠DAE=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系中,A(0,﹣1)、B(﹣2,0)C(4,0)
(1)求△ABC的面積;
(2)在y軸上是否存在一個(gè)點(diǎn)D,使得△ABD為等腰三角形,若存在,求出點(diǎn)D坐標(biāo);若不存,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點(diǎn)D、E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com