【題目】如圖,⊙O為△ABC的外接圓,AB=AC,直線MN與⊙O相切于點C,弦BD∥MN,AC與BD相交于點E.
(1)求證:△ABE ≌ △ACD;
(2)若AB = 5,BC = 3,求AE.
【答案】(1) 見解析;(2) AE = .
【解析】分析:(1)在兩個三角形中,證明兩個三角形全等,找出三角形全等的條件,根據(jù)同弧所對的圓周角相等,根據(jù)所給的邊長相等,由邊角邊確定兩個三角形是全等三角形.
(2)可以證明得到對應邊成比例,設(shè)出要求的邊長,得到關(guān)于邊長的方程,解方程即可.
詳解:(1)連接OC,
∵直線MN與⊙O相切于點C,
∴OC ⊥ MN,
∵BD∥ MN,
∴OC ⊥ BD,
∴ =,
∴∠BAE =∠CAD,
在△ABE和△ACD中
∴△ABE ≌ △ACD(ASA).
(2)由(1)知∠BAC = ∠CAD = ∠CBD,
∴
∴ ,
∵,
∴CE = ,
∴AE = .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+∠EDF=180°,以①②③中的兩個作為條件,另一個作為結(jié)論,可以使結(jié)論成立的有幾個( )
A.0個B.1個C.2個D.3個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩同學只有一張乒乓球比賽的門票,誰都想去,最后商定通過轉(zhuǎn)盤游戲決定.游戲規(guī)則是:轉(zhuǎn)動下面平均分成三個扇形且標有不同顏色的轉(zhuǎn)盤,轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,若指針前后所指顏色相同,則甲去;否則乙去.(如果指針恰好停在分割線上,那么重轉(zhuǎn)一次,直到指針指向一種顏色為止)
(1)轉(zhuǎn)盤連續(xù)轉(zhuǎn)動兩次,指針所指顏色共有幾種情況?通過畫樹狀圖或列表法加以說明;
(2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在△ABC中,AE、BF是角平分線,它們相交于點O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直角坐標系中,已知A(1,0),以點A為圓心畫圓,點M(4,4)在⊙A上,直線y=﹣x+b過點M,分別交x軸、y軸于B、C兩點.
(1)①填空:⊙A的半徑為 ,b= .(不需寫解答過程)
②判斷直線BC與⊙A的位置關(guān)系,并說明理由.
(2)若EF切⊙A于點F分別交AB和BC于G、E,且FE⊥BC,求的值.
(3)若點P在⊙A上,點Q是y軸上一點且在點C下方,當△PQM為等腰直角三角形時,直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,n+1個邊長為2的等邊三角形有一條邊在同一直線上,設(shè)△B2D1C1面積為S1,△B3D2C2面積為S2,…,△Bn+1DnCn面積為Sn,則Sn等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著科技進步,無人機的應用越來越廣,如圖1,在某一時刻,無人機上的探測器顯示,從無人機A處看一棟樓頂部B點的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.
(1)如果上述仰角與俯角分別為30°與60°,且該樓的高度為30米,求該時刻無人機的豎直高度CD;
(2)如圖2,如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時刻無人機的豎直高度CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com