【題目】在平面直角坐標(biāo)系中,對于任意三點AB,C,給出如下定義:若矩形的任何一條邊均與某條坐標(biāo)軸平行或重合,且AB,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,BC的外延矩形,點AB,C的所有外延矩形中,面積最小的矩形稱為點A,B,C的最佳外延矩形.例如,圖①中的矩形A1B1C1D1A2B2C2D2,A3B3CD3,都是點AB,C的外延矩形,矩形A3B3CD3是點A,B,C的最佳外延矩形.

1)如圖②,已知A(﹣1,0),B3,2),點C在直線yx1上,設(shè)點C的橫坐標(biāo)為t

①若t,則點A,B,C的最佳外延矩形的面積為多少?

②若點AB,C的最佳外延矩形的面積為9,求t的值.

2)如圖③,已知點M40),N0,),Px,y)是拋物線y=﹣x2+2x+3上一點,求點M,NP的最佳外延矩形面積的最小值,以及此時點P的橫坐標(biāo)x的取值范圍;

3)已知D1,0).若Q是拋物線y=﹣x22mxm2+2m+1的圖象在﹣2x1之間的最高點,點E的坐標(biāo)為(0,4m),設(shè)點D,E,Q的最佳外延矩形的面積為S,當(dāng)4S6時,直接寫出m的取值范圍.

【答案】1)①8;②t的值為;(2)最小值為14,此時P點橫坐標(biāo)x的取值范圍為:0x11+x3;(3m的取值范圍為:m或﹣m≤﹣1

【解析】

1)①以AB為對角線的矩形面積即為所求.
②分兩種情況討論:Cx軸下方;CB點右上方.分別列方程求解即可.
2)分別令y等于M、N的縱坐標(biāo),解出方程并結(jié)合圖形即可得出答案.
3)先求出拋物線的頂點坐標(biāo),然后討論拋物線對稱軸與所給的x的范圍的關(guān)系,對于每一種情況,分別表示出S,再根據(jù)S的范圍解不等式組即可求出m的取值范圍.

1)①如圖②,作矩形ANBM,

t,∴C,),

A(﹣10),B3,2),∴C在矩形ANBM內(nèi)部,

此時,矩形ANBM是點A,B,C的最佳外延矩形.

S矩形ANBMAMBM=(3+1)(20)=8

故答案為8

②若Cx軸下方,則:4[2﹣(t1]9,解得t

CB點右上方,則:(t+1)(t1)=9,解得t1=﹣(舍),t2

綜上所述,t的值為

2)令y=﹣x2+2x+3,解得x11+,x21,

y=﹣x2+2x+30,解得x1=﹣1x23,

M,N,P的最佳外延矩形面積的最小值為14,

此時P點橫坐標(biāo)x的取值范圍為:0≤x≤11+≤x≤3

3)∵y=﹣x22mxm2+2m+1=﹣(x+m2+2m+1

∴拋物線的頂點坐標(biāo)為(﹣m2m+1).

①當(dāng)1≤mm≤1時,Q點坐標(biāo)為(1,﹣m2

若﹣m24m,則m0(舍)或m<﹣4,此時Sm2,

4≤S≤6,∴﹣≤m≤2(舍).

若﹣m2≥4m,則﹣4≤m≤0,此時S=﹣4m

4≤4m≤6,解得:﹣≤m≤1

②當(dāng)﹣2<﹣m1即﹣1m2時,Q點的坐標(biāo)就是拋物線頂點,S4mm+1),

4≤4mm+1≤6,解得≤m≤,

③當(dāng)﹣m≤2m≥2時,4m≥8,不合題意,舍去.

綜上所述,m的取值范圍為:≤m≤或﹣≤m≤1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】201912月以來,湖北省武漢市部分醫(yī)院陸續(xù)發(fā)現(xiàn)不明原因肺炎病例,現(xiàn)已證實該肺炎為一種新型冠狀病毒感染的肺炎,其傳染性較強(qiáng).為了有效地避免交叉感染,需要采取以下防護(hù)措施:①戴口罩;②勤洗手;③少出門;④重隔離;⑤捂口鼻;⑥謹(jǐn)慎吃.某公司為了解員工對防護(hù)措施的了解程度(包括不了解、了解很少、基本了解和很了解),通過網(wǎng)上問卷調(diào)查的方式進(jìn)行了隨機(jī)抽樣調(diào)查(每名員工必須且只能選擇一項),并將調(diào)查結(jié)果繪制成如下兩幅統(tǒng)計圖.

請你根據(jù)上面的信息,解答下列問題

1)本次共調(diào)查了_______名員工,條形統(tǒng)計圖中________

2)若該公司共有員工1000名,請你估計不了解防護(hù)措施的人數(shù);

3)在調(diào)查中,發(fā)現(xiàn)有4名員工對防護(hù)措施很了解,其中有3名男員工、1名女員工.若準(zhǔn)備從他們中隨機(jī)抽取2名,讓其在公司群內(nèi)普及防護(hù)措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖(1),在中,分別作邊上的高和中線,請用無刻度的直尺完成作圖(保留作圖痕跡);

2)如圖(2),以為旋轉(zhuǎn)中心,將順時針旋轉(zhuǎn)度,得到請用無刻度的直尺作出(保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解本校九年級學(xué)生期末數(shù)學(xué)考試情況,小亮在九年級隨機(jī)抽取了一部分學(xué)生的期末數(shù)學(xué)成績?yōu)闃颖,分?/span>A10090分)、B8980分)、C7960分)、D590分)四個等級進(jìn)行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:

1)這次隨機(jī)抽取的學(xué)生共有   人;

2)這個學(xué)校九年級共有學(xué)生1200人,若分?jǐn)?shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學(xué)生期末數(shù)學(xué)考試成績?yōu)閮?yōu)秀的學(xué)生人數(shù)大約有   人;

3D等級的四位學(xué)生正好是兩位男生和兩位女生,小亮想隨機(jī)采訪其中的兩位,請用樹狀圖或列表法計算小亮采訪的學(xué)生恰好是一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在滑草過程中,小明發(fā)現(xiàn)滑道兩邊形如兩條雙曲線,如圖,點A1A2,A3…在反比例函數(shù)yx0)的圖象上,點B1,B2,B3…反比例函數(shù)yk1,x0)的圖象上,A1B1A2B2…∥y軸,已知點A1A2…的橫坐標(biāo)分別為1,2,…,令四邊形A1B1B2A2A2B2B3A3、…的面積分別為S1、S2、….若S1939,則k__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長是2,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉(zhuǎn)60°得到BN,連接MN,則在點M運(yùn)動過程中,線段MN長度的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把繞點旋轉(zhuǎn)到,當(dāng)點D剛好落在上時,連結(jié),設(shè),相交于點,則圖中相似三角形(不含全等)的對數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以BC為直徑的⊙O交斜邊AB于點M,若HAC的中點,連接MH

(1)求證:MH為⊙O的切線.

(2)若MH=,tanABC=,求⊙O的半徑.

(3)在(2)的條件下分別過點A、B作⊙O的切線,兩切線交于點D,AD與⊙O相切于N點,過N點作NQBC,垂足為E,且交⊙OQ點,求線段NQ的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y=ax2+2x+cx軸交于A(﹣4,0),B(1,0)兩點,過點B的直線y=kx+分別與y軸及拋物線交于點C,D.

(1)求直線和拋物線的表達(dá)式;

(2)動點P從點O出發(fā),在x軸的負(fù)半軸上以每秒1個單位長度的速度向左勻速運(yùn)動,設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,PDC為直角三角形?請直接寫出所有滿足條件的t的值;

(3)如圖2,將直線BD沿y軸向下平移4個單位后,與x軸,y軸分別交于E,F(xiàn)兩點,在拋物線的對稱軸上是否存在點M,在直線EF上是否存在點N,使DM+MN的值最小?若存在,求出其最小值及點M,N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案