【題目】Surface平板電腦(如圖①)因體積小功能強(qiáng)備受好評,將Surface水平放置時(shí),側(cè)面示意圖如圖②所示,其中點(diǎn)M為屏幕AB的中點(diǎn),支架CM可繞點(diǎn)M轉(zhuǎn)動(dòng),當(dāng)AB的坡度i=時(shí),B點(diǎn)恰好位于C點(diǎn)的正上方,此時(shí)一束與水平面成37°的太陽光剛好經(jīng)過B,D兩點(diǎn),已知CM長12cm,則AD的長( 。cm.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A. B. C. D. 20
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在Rt△ABC中,CD是斜邊上的中線,DE⊥AB交BC于點(diǎn)F,交AC的延長線于點(diǎn)E.
求證:(1)△ADE∽△FDB;
(2)CD2=DEDF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD平分∠BAC,AB=AC,連接BC,交AD于點(diǎn)E,下列說法正確的有( )
①∠BAC=∠ACB;②S四邊形ABDC=ADCE;③AB2+CD2=AC2+BD2;④AB﹣BD=AC﹣CD.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中xOy中,拋物線y=x2﹣4x+m+2的頂點(diǎn)在x軸上.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)Q是x軸上一點(diǎn),
①若在拋物線上存在點(diǎn)P,使得∠POQ=45°,求點(diǎn)P的坐標(biāo).
②拋物線與直線y=1交于點(diǎn)E,F(點(diǎn)E在點(diǎn)F的左側(cè)),將此拋物線在點(diǎn)E,F(包含點(diǎn)E和點(diǎn)F)之間的部分沿x軸向左平移n個(gè)單位后得到的圖象記為G,若在圖象G上存在點(diǎn)P,使得∠POQ=45°,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在甲、乙兩個(gè)不透明的布袋,甲袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字0,1,2;乙袋中裝有3個(gè)完全相同的小球,分別標(biāo)有數(shù)字﹣1,﹣2,0;現(xiàn)從甲袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為x,再從乙袋中隨機(jī)抽取一個(gè)小球,記錄標(biāo)有的數(shù)字為y,確定點(diǎn)M坐標(biāo)為(x,y).
(1)用樹狀圖或列表法列舉點(diǎn)M所有可能的坐標(biāo);
(2)求點(diǎn)M(x,y)在函數(shù)y=-x+1的圖象上的概率;
(3)在平面直角坐標(biāo)系xOy中,⊙O的半徑是2,求過點(diǎn)M(x,y)能作⊙O的切線的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近期,第八屆“重慶車博會(huì)“在會(huì)展中心盛大開幕,某汽車公司推出降價(jià)促銷活動(dòng),銷售員小王提前做了市場調(diào)查,發(fā)現(xiàn)車輛的銷量y(輛)與售價(jià)(萬元/輛)存在如下表所示的一次函數(shù)關(guān)系:
售價(jià)x(萬元/輛) | … | 20 | 19.8 | 19.6 | 19.4 | 19.2 | 19 | … |
銷量y(輛) | … | 5 | 6 | 7 | 8 | 9 | 10 | … |
(1)求y與x之間的函數(shù)關(guān)系式;
(2)若每輛車的成本為11萬元,在每輛車售價(jià)不低于15萬元的前提下,每輛車的售價(jià)定為多少萬元時(shí),汽車公司獲得的總利潤W(萬元)有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CE是ABCD的邊AB的垂直平分線,垂足為點(diǎn)O,CE與DA的延長線交于點(diǎn)E.連接AC,BE,DO,DO與AC交于點(diǎn)F,則下列結(jié)論:
①四邊形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:3;
④S四邊形AFOE:S△COD=2:3.
其中正確的結(jié)論有_____.(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,在矩形ABCD中,,,點(diǎn)E為線段AB上一動(dòng)點(diǎn)不與點(diǎn)A、點(diǎn)B重合,先將矩形ABCD沿CE折疊,使點(diǎn)B落在點(diǎn)F處,CF交AD于點(diǎn)H,若折疊后,點(diǎn)B的對應(yīng)點(diǎn)F落在矩形ABCD的對稱軸上,則AE的長是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,平分交于點(diǎn),為上一點(diǎn),經(jīng)過點(diǎn),的分別交,于點(diǎn),,連接交于點(diǎn).
(1)求證:是的切線;
(2)設(shè),,試用含的代數(shù)式表示線段的長;
(3)若,,求的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com