【題目】如圖,書桌上的一種新型臺歷和一塊主板AB、一個架板AC和環(huán)扣(不計寬度,記為點A)組成,其側(cè)面示意圖為△ABC,測得AC⊥BC,AB=5cm,AC=4cm,現(xiàn)為了書寫記事方便,須調(diào)整臺歷的擺放,移動點C至C′,當(dāng)∠C′=30°時,求移動的距離即CC′的長(或用計算器計算,結(jié)果取整數(shù),其中 =1.732, =4.583)

【答案】解:過點A′作A′D⊥BC′,垂足為D. 在△ABC中,∵AC⊥BC,AB=5cm,AC=4cm,
∴BC=3cm.
當(dāng)動點C移動至C′時,A′C′=AC=4cm.
在△A′DC′中,∵∠C′=30°,∠A′DC′=90°,
∴A′D= A′C′=2cm,C′D= A′D=2 cm.
在△A′DB中,∵∠A′DB=90°,A′B=5cm,A′D=2cm,
∴BD= = cm,
∴CC′=C′D+BD﹣BC=2 + ﹣3,
=1.732, =4.583,
∴CC′=2×1.732+4.583﹣3≈5.
故移動的距離即CC′的長約為5cm.

【解析】過點A′作A′D⊥BC′,垂足為D,先在△ABC中,由勾股定理求出BC=3cm,再解Rt△A′DC′,得出A′D=2cm,C′D=2 cm,在Rt△A′DB中,由勾股定理求出BD= cm,然后根據(jù)CC′=C′D+BD﹣BC,將數(shù)據(jù)代入,即可求出CC′的長.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB的一邊OA為平面鏡,∠AOB=37°36′,在OB上有一點E,從E點射出一束光線經(jīng)OA上一點D反射,反射光線DC恰好與OB平行,入射角∠ODE與反射角∠ADC相等,則∠DEB的度數(shù)是( )

A. 75°36′ B. 75°12′ C. 74°36′ D. 74°12′

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在數(shù)學(xué)課中學(xué)習(xí)了《解直角三角形》的內(nèi)容后,雙休日組織教學(xué)興趣小組的小伙伴進行實地測量.如圖,他們在坡度是i=1:2.5的斜坡DE的D處,測得樓頂?shù)囊苿油ㄓ嵒捐F塔的頂部A和樓頂B的仰角分別是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根據(jù)所學(xué)知識很快計算出了鐵塔高AM.親愛的同學(xué)們,相信你也能計算出鐵塔AM的高度!請你寫出解答過程.(數(shù)據(jù) ≈1.41, ≈1.73供選用,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(12)如圖1,已知Rt△ABC,AB=BC,AC=2,把一塊含30°角的三角板DEF的直角頂點D放在AC的中點上(直角三角板的短直角邊為DE,長直角邊為DF),CDEBDF上.

(1)求重疊部分△BCD的面積;

(2)如圖2,將直角三角板DEFD點按順時針方向旋轉(zhuǎn)30,DEBC于點M,DFAB于點N.

求證:DM=DN;

在此條件下重疊部分的面積會發(fā)生變化嗎?若發(fā)生變化,請求出重疊部分的面積,若不發(fā)生變化請說明理由;

(3)如圖3,將直角三角板DEFD點按順時針方向旋轉(zhuǎn)α(0<α<90),DEBC于點M,DFAB于點N,DM=DN的結(jié)論仍成立嗎?重疊部分的面積會變嗎?(請直接寫出結(jié)論,不需要說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3

(1)觀察每次變換前后的三角形的變化規(guī)律,若將△OA3B3變換成△OA4B4,則A4的坐標是__,B4的坐標是__;

(2)若按第(1)題找到的規(guī)律將△OAB進行n次變換,得到△OAnBn,比較每次變換中三角形頂點坐標有何變化,找出規(guī)律,推測An的坐標是__,Bn的坐標是__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知小紅的成績?nèi)缦卤恚?/span>

文化成績

綜合素

質(zhì)成績

總成績

測驗1

測驗2

測驗3

小紅

560

580

630

12

(1)小紅的這三次文化測試成績的平均分是_____分;

(2)用(1)中的平均分加上綜合素質(zhì)成績就是小紅的總成績.用同樣的方法計算出小紅所在班級全部同學(xué)的總成績并繪制出了如圖所示的頻數(shù)分布直方圖.那么小紅所在班級共有_____名同學(xué);

(3)學(xué)校將根據(jù)總成績由高到低保送小紅所在班級前15名同學(xué)進入高中學(xué)習(xí),請問小紅能被保送嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)將組織七年級學(xué)生春游一天,由王老師和甲、乙兩同學(xué)到客車租賃公司洽談租車事宜

1兩同學(xué)向公司經(jīng)理了解租車的價格,公司經(jīng)理對他們說公司有45座和60座兩種型號的客車可供租用60座的客車每輛每天的租金比45座的貴100元王老師說我們學(xué)校八年級昨天在這個公司租了5輛45座和2輛60座的客車,一天的租金為1600元你們能知道45座和60座的客車每輛每天的租金各是多少元嗎甲、乙兩同學(xué)想了一下都說知道了價格

聰明的你知道45座和60座的客車每輛每天的租金各是多少元嗎?

2公司經(jīng)理問你們準備怎樣租車甲同學(xué)說我的方案是只租用45座的客車,可是會有一輛客車空出30個座位;乙同學(xué)說我的方案只租用60座客車,正好坐滿且比甲同學(xué)的方案少用兩輛客車,王老師在旁聽了他們的談話說從經(jīng)濟角度考慮,還有別的方案嗎?如果是你,你該如何設(shè)計租車方案并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,AB=a,C是半圓上一點,弦AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,連接CD,DB,OD.
(1)求證:△CDF≌△BDE;
(2)當(dāng)AD=時,四邊形AODC是菱形;
(3)當(dāng)AD=時,四邊形AEDF是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A、E重合),在AE同側(cè)分別作正△ABC和正△CDE,ADBE交于點OADBC交于點P,BECD交于點Q,連接PQ.以下五個結(jié)論:①AD=BE;②PQ∥AE③AP=BQ;④DE=DP;⑤∠AOB=60°

恒成立的結(jié)論有 .(把你認為正確的序號都填上)

查看答案和解析>>

同步練習(xí)冊答案