【題目】如圖,在△ABC中,∠ACB=90°,BC的垂直平分線DEBCD,交ABE,FDE上,且AF=CE=AE

1)說明四邊形ACEF是平行四邊形;

2)當(dāng)∠B滿足什么條件時,四邊形ACEF是菱形,并說明理由.

【答案】1)說明見解析;(2)當(dāng)∠B=30°時,四邊形ACEF是菱形.理由見解析.

【解析】

試題(1)證明△AEC≌△EAF,即可得到EF=CA,根據(jù)兩組對邊分別相等的四邊形是平行四邊形即可判斷;

2)當(dāng)∠B=30°時,四邊形ACEF是菱形.根據(jù)直角三角形的性質(zhì),即可證得AC=EC,根據(jù)菱形的定義即可判斷.

1)證明:由題意知∠FDC=∠DCA=90°

∴EF∥CA,

∴∠FEA=∠CAE

∵AF=CE=AE,

∴∠F=∠FEA=∠CAE=∠ECA

△AEC△EAF中,

∴△EAF≌△AECAAS),

∴EF=CA

四邊形ACEF是平行四邊形.

2)解:當(dāng)∠B=30°時,四邊形ACEF是菱形.

理由如下:∵∠B=30°∠ACB=90°,

∴AC=AB,

∵DE垂直平分BC

∴∠BDE=90°

∴∠BDE=∠ACB

∴ED∥AC

∵BD=DC

∴DE△ABC的中位線,

∴EAB的中點(diǎn),

∴BE=CE=AE,

∵AE=CE

∴AE=CE=AB,

∵AC=AB,

∴AC=CE,

四邊形ACEF是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的頂點(diǎn),分別在菱形的邊,上,頂點(diǎn)在菱形的對角線.

1)求證:;

2)若中點(diǎn),,求菱形的周長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形的頂點(diǎn),的坐標(biāo)分別為,,將平行四邊形繞點(diǎn)逆時針方向旋轉(zhuǎn)得到平行四邊形,當(dāng)點(diǎn)落在的延長線上時,線段于點(diǎn),則線段的長度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有兩個紙箱,每個紙箱內(nèi)各裝有4個材質(zhì)、大小都相同的乒乓球,其中一個紙箱內(nèi)4個小球上分別寫有1、2、3、44個數(shù),另一個紙箱內(nèi)4個小球上分別寫有56、7、84個數(shù),甲、乙兩人商定了一個游戲,規(guī)則是:從這兩個紙箱中各隨機(jī)摸出一個小球,然后把兩個小球上的數(shù)字相乘,若得到的積是2的倍數(shù),則甲得1分,若得到積是3的倍數(shù),則乙得2.完成一次游戲后,將球分別放回各自的紙箱,搖勻后進(jìn)行下一次游戲,最后得分高者勝出.

(1)請你通過列表(或樹狀圖)分別計算乘積是2的倍數(shù)和3的倍數(shù)的概率;

(2)你認(rèn)為這個游戲公平嗎?為什么?若你認(rèn)為不公平,請你修改得分規(guī)則,使游戲?qū)﹄p方公平.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的兩條高BD、CE相交于點(diǎn)O OBOC.則下列結(jié)論:

①△BEC≌△CDB;

②△ABC是等腰三角形;

AEAD

④點(diǎn)O在∠BAC的平分線上,

其中正確的有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線與直線.

1)求兩直線交點(diǎn)的坐標(biāo);

2)求的面積.

3)在直線上能否找到點(diǎn),使得,若能,請求出點(diǎn)的坐標(biāo),若不能請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加快智慧校園建設(shè),某市準(zhǔn)備為試點(diǎn)學(xué)校采購一批兩種型號的一體機(jī),經(jīng)過市場調(diào)查發(fā)現(xiàn),每套型一體機(jī)的價格比每套型一體機(jī)的價格多萬元,且用萬元恰好能購買型一體機(jī)和型一體機(jī).

1)列二元一次方程組解決問題:求每套型和型一體機(jī)的價格各是多少萬元?

2)由于需要,決定再次采購型和型一體機(jī)共套,此時每套型體機(jī)的價格比原來上漲,每套型一體機(jī)的價格不變.設(shè)再次采購型一體機(jī)套,那么該市至少還需要投入多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國南水北調(diào)中線工程的起點(diǎn)是丹江水庫,按照工程計劃,需對原水庫大壩進(jìn)行混凝土培厚加高,使壩高由原來的162米增加到176.6米,以抬高蓄水位.如圖是某一段壩體加高工程的截面示意圖,其中原壩體的高為BE,背水坡坡角∠BAE=68°,新壩體的高為DE,背水坡CD的坡度為:1.求工程完工后背水坡底端水平方向增加的寬度AC.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin68°0.93,cos68°0.37,tan68°2.50,1.73).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形中,,,∠,點(diǎn)的中點(diǎn),點(diǎn)的邊上,若為等腰三角形,則的長為__________

查看答案和解析>>

同步練習(xí)冊答案