【題目】已知二次函數(shù)y=ax2+bx﹣2的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(4,0),且當(dāng)x=﹣2和x=5時(shí)二次函數(shù)的函數(shù)值y相等.

(1)求實(shí)數(shù)a、b的值;
(2)如圖1,動(dòng)點(diǎn)E,F(xiàn)同時(shí)從A點(diǎn)出發(fā),其中點(diǎn)E以每秒2個(gè)單位長(zhǎng)度的速度沿AB邊向終點(diǎn)B運(yùn)動(dòng),點(diǎn)F以每秒 個(gè)單位長(zhǎng)度的速度沿射線AC方向運(yùn)動(dòng).當(dāng)點(diǎn)E停止運(yùn)動(dòng)時(shí),點(diǎn)F隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.連接EF,將△AEF沿EF翻折,使點(diǎn)A落在點(diǎn)D處,得到△DEF.
①是否存在某一時(shí)刻t,使得△DCF為直角三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
②設(shè)△DEF與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)關(guān)系式.

【答案】
(1)解:由題意得

解得:


(2)解:①由(1)知二次函數(shù)為y= x2 x﹣2

∵A(4,0),

∴B(﹣1,0),C(0,﹣2)

∴OA=4,OB=1,OC=2

∴AB=5,AC=2 ,BC=

∴AC2+BC2=25=AB2

∴△ABC為直角三角形,且∠ACB=90°

∵AE=2t,AF= t,

= =

又∵∠EAF=∠CAB,

∴△AEF∽△ACB

∴∠AEF=∠ACB=90°

∴△AEF沿EF翻折后,點(diǎn)A落在x軸上點(diǎn)D處;

由翻折知,DE=AE,

∴AD=2AE=4t,EF= AE=t

假設(shè)△DCF為直角三角形

當(dāng)點(diǎn)F在線段AC上時(shí)

。┤鬋為直角頂點(diǎn),則點(diǎn)D與點(diǎn)B重合,如圖2

∴AE= AB= t= ÷2= ;

ⅱ)若D為直角頂點(diǎn),如圖3

∵∠CDF=90°,

∴∠ODC+∠EDF=90°

∵∠EDF=∠EAF,

∴∠OBC+∠EAF=90°

∴∠ODC=∠OBC,

∴BC=DC

∵OC⊥BD,

∴OD=OB=1

∴AD=3,

∴AE=

∴t=

當(dāng)點(diǎn)F在AC延長(zhǎng)線上時(shí),∠DFC>90°,△DCF為鈍角三角形

綜上所述,存在時(shí)刻t,使得△DCF為直角三角形,t= 或t=

②ⅰ)當(dāng)0<t≤ 時(shí),重疊部分為△DEF,如圖1、圖2

∴S= ×2t×t=t2;

ⅱ)當(dāng) <t≤2時(shí),設(shè)DF與BC相交于點(diǎn)G,則重疊部分為四邊形BEFG,如圖4

過(guò)點(diǎn)G作GH⊥BE于H,設(shè)GH=m

則BH= ,DH=2m,∴DB=

∵DB=AD﹣AB=4t﹣5

=4t﹣5,

∴m= (4t﹣5)

∴S=SDEF﹣SDBG= ×2t×t﹣ (4t﹣5)× (4t﹣5)=﹣ t2+ t﹣ ;

ⅲ)當(dāng)2<t≤ 時(shí),重疊部分為△BEG,如圖5

∵BE=DE﹣DB=2t﹣(4t﹣5)=5﹣2t,GE=2BE=2(5﹣2t)

∴S= ×(5﹣2t)×2(5﹣2t)=4t2﹣20t+25.


【解析】(1)根據(jù)拋物線圖象經(jīng)過(guò)點(diǎn)A以及“當(dāng)x=-2和x=5時(shí)二次函數(shù)的函數(shù)值y相等”兩個(gè)條件,列出方程組求出待定系數(shù)的值即可解答.
(2)①首先由拋物線解析式能得到點(diǎn)A、B、C三點(diǎn)的坐標(biāo),則線段OA、OB、OC的長(zhǎng)可求,進(jìn)一步能得出AB、BC、AC的長(zhǎng);首先用t 表示出線段AD、AE、AF(即DF)的長(zhǎng),則根據(jù)AE、EF、OA、OC的長(zhǎng)以及公共角∠OAC能判定△AEF、△AOC相似,那么△AEF也是一個(gè)直角三角形,及∠AEF是直角;若△DCF是直角,可分成三種情況討論:
i)、點(diǎn)C為直角頂點(diǎn),由于△ABC恰好是直角三角形,且以點(diǎn)C為直角頂點(diǎn),所以此時(shí)點(diǎn)B、D重合,由此得到AD的長(zhǎng),進(jìn)而求出t的值;
ii)、點(diǎn)D為直角頂點(diǎn),此時(shí)∠CDB與∠CBD恰好是等角的余角,由此可證得OB=OD,再得到AD的長(zhǎng)后可求出t的值;
iii)、點(diǎn)F為直角頂點(diǎn),當(dāng)點(diǎn)F在線段AC上時(shí),∠DFC是銳角,而點(diǎn)F在射線AC的延長(zhǎng)線上時(shí),∠DFC又是鈍角,所以這種情況不符合題意.
②此題需要分三種情況討論:
i)、當(dāng)點(diǎn)E在點(diǎn)A與線段AB中點(diǎn)之間時(shí),兩個(gè)三角形的重疊部分是整個(gè)△DEF;
ii)、當(dāng)點(diǎn)E在線段AB中點(diǎn)與點(diǎn)O之間時(shí),重疊部分是個(gè)不規(guī)則四邊形,那么其面積可由大直角三角形與小鈍角三角形的面積差求得;
iii)、當(dāng)點(diǎn)E在線段OB上時(shí),重疊部分是個(gè)小直角三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD是等腰△ABC底邊BC上的高.點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E,使OE=OD,連接AE,CE.

(1)求證:四邊形ADCE的是矩形;
(2)若AB=17,BC=16,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,然后解答后面的問(wèn)題.

我們知道方程2x+3y=12有無(wú)數(shù)組解,但在實(shí)際生活中我們往往只需要求出其正整數(shù)解.例:由2x+3y=12,得,(x、y為正整數(shù))∴則有0x6.又為正整數(shù),則為正整數(shù).

23互質(zhì),可知:x3的倍數(shù),從而x=3,代入

2x+3y=12的正整數(shù)解為

問(wèn)題:

1)請(qǐng)你寫出方程2x+y=5的一組正整數(shù)解:______;

2)若為自然數(shù),則滿足條件的x值有______個(gè);

A、2B、3C、4D5

3)七年級(jí)某班為了獎(jiǎng)勵(lì)學(xué)習(xí)進(jìn)步的學(xué)生,購(gòu)買了單價(jià)為3元的筆記本與單價(jià)為5元的鋼筆兩種獎(jiǎng)品,共花費(fèi)35元,問(wèn)有幾種購(gòu)買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】去冬今春,某市部分地區(qū)遭受了罕見(jiàn)的旱災(zāi),“旱災(zāi)無(wú)情人有情”.某單位給某鄉(xiāng)中小學(xué)捐獻(xiàn)一批飲用水和蔬菜共320件,其中飲用水比蔬菜多80件.
(1)求飲用水和蔬菜各有多少件?
(2)現(xiàn)計(jì)劃租用甲、乙兩種貨車共8輛,一次性將這批飲用水和蔬菜全部運(yùn)往該鄉(xiāng)中小學(xué).已知每輛甲種貨車最多可裝飲用水40件和蔬菜10件,每輛乙種貨車最多可裝飲用水和蔬菜各20件.則運(yùn)輸部門安排甲、乙兩種貨車時(shí)有幾種方案?請(qǐng)你幫助設(shè)計(jì)出來(lái).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩種商品原來(lái)的單價(jià)和為100元因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來(lái)的單價(jià)和提高了20%甲、乙兩種商品原來(lái)的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司共有A,B,C三個(gè)部門,根據(jù)每個(gè)部門的員工人數(shù)和相應(yīng)每人所創(chuàng)的年利潤(rùn)繪制成如下的統(tǒng)計(jì)表和扇形圖
各部門人數(shù)及每人所創(chuàng)年利潤(rùn)統(tǒng)計(jì)表

部門

員工人數(shù)

每人所創(chuàng)的年利潤(rùn)/萬(wàn)元

A

5

10

B

b

8

C

c

5


(1)①在扇形圖中,C部門所對(duì)應(yīng)的圓心角的度數(shù)為
②在統(tǒng)計(jì)表中,b= , c=
(2)求這個(gè)公司平均每人所創(chuàng)年利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】乘法公式的探究及應(yīng)用:

數(shù)學(xué)活動(dòng)課上,老師準(zhǔn)備了若干個(gè)如圖1的三種紙片,A種紙片邊長(zhǎng)為的正方形,B種紙片是邊長(zhǎng)為的正方形,C種紙片長(zhǎng)為寬為的長(zhǎng)方形,并用A種紙片一張,B種紙片一張,C種紙片兩張拼成如圖2的大正方形。

(1)請(qǐng)用兩種不同的方法表示圖2大正方形的面積:

方法1:_____________________;方法2:_____________________.

(2)觀察圖2,請(qǐng)你寫出下列三個(gè)代數(shù)式:之間的等量關(guān)系;

(3)類似的,請(qǐng)你用圖1中的三種紙片拼一個(gè)圖形驗(yàn)證:

(4)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:

已知:的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD的一組對(duì)邊AD、BC的延長(zhǎng)線交于點(diǎn)E.
(1)如圖1,若∠ABC=∠ADC=90°,求證:EDEA=ECEB;

(2)如圖2,若∠ABC=120°,cos∠ADC= ,CD=5,AB=12,△CDE的面積為6,求四邊形ABCD的面積;

(3)如圖3,另一組對(duì)邊AB、DC的延長(zhǎng)線相交于點(diǎn)F.若cos∠ABC=cos∠ADC= ,CD=5,CF=ED=n,直接寫出AD的長(zhǎng)(用含n的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先化簡(jiǎn),再求值:(x﹣1+ )÷ ,其中x的值從不等式組 的整數(shù)解中選取.

查看答案和解析>>

同步練習(xí)冊(cè)答案