【題目】如圖,已知二次函數(shù)軸交于、兩點(點在點左),與軸交于點,連接,點為二次函數(shù)圖象上的動點.

1)若的面積為3,求拋物線的解析式;

2)在(1)的條件下,若在軸上存在點,使得,求點的坐標(biāo);

3)若為對稱軸右側(cè)拋物線上的動點,直線軸于點,直線軸于點,判斷的值是否為定值,若是,求出定值,若不是請說明理由.

【答案】1;(2)(-2)或(6,);(3的值為定值

【解析】

1)令y=0,求出點A和點B的坐標(biāo),得到ABOC,再根據(jù)△ABC的面積求出a的值;

2)分當(dāng)點Fy軸正半軸時,當(dāng)點Fy軸負(fù)半軸兩種情況,過點Py軸垂線于點Q,設(shè)點P坐標(biāo)為(x,),證明△PQC∽△COB,通過比例關(guān)系求出點P的橫坐標(biāo),從而得出結(jié)果;

3)設(shè)PA的解析式為:y=kx+k,PB的解析式為:y=mx-3m,分別和拋物線表達(dá)式聯(lián)立,利用根與系數(shù)的關(guān)系得出點P橫坐標(biāo)的兩種表示方法,再根據(jù)函數(shù)表達(dá)式得出點C、D、E的坐標(biāo),得到ECDE的長,從而證明為定值.

解:(1)令y=0,則,

解得:x1=-1,x2=3,

A-10),B3,0),

AB=4OC=-3a,

SABC=

解得a=,

∴拋物線的表達(dá)式為

2 如圖1、2,當(dāng)點Fy軸正半軸時,

過點Py軸垂線于點Q,

∵∠PCF=ABC,∠PQC=BOC

∴△PQC∽△COB,

,

設(shè)點P坐標(biāo)為(x,),

∴圖1中,,解得:x=-20(舍),

2中,,解得:x=60(舍),

代入拋物線表達(dá)式中可得:

P的坐標(biāo)為(-2,)或(6);

如圖3,當(dāng)點Fy軸負(fù)半軸時,過點Py軸垂線于點Q,

同理可知:△PQC∽△COB,

,設(shè)點P坐標(biāo)為(x,),

,解得:x=-20

由于此時點P只能在y軸右側(cè),所以x≠-2,

綜上:點P的坐標(biāo)為(-2)或(6,);

3)∵A-1,0),B3,0),

設(shè)PA的解析式為:y=kx+k,PB的解析式為:y=mx-3m

聯(lián)立:,

可得:,

∴點P的橫坐標(biāo)為,且=,

m-k=4a,即k=m-4a,

E0,k),D0,-3m),C0-3a),

EC=k+3aDE=k+3m,

,

的值為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小學(xué)為每個班級配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動停止加熱,水溫開始下降,水溫y(℃)與通電時間xmin)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫y(℃)與通電時間xmin)的關(guān)系如下圖所示,回答下列問題:

1)當(dāng)0≤x≤8時,求yx之間的函數(shù)關(guān)系式;

2)求出圖中a的值;

3)某天早上720,李老師將放滿水后的飲水機(jī)電源打開,若他想在800上課前能喝到不超過40℃的溫開水,問:他應(yīng)在什么時間段內(nèi)接水?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,將矩形ABCD折疊,使BC落在對角線BD上,折痕為BE,點C落在點C'處,若∠ADB=54°,則∠DBE的度數(shù)為 °

2)小明手中有一張矩形紙片ABCD,AB=4AD=9.(畫一畫)如圖2,點E在這張矩形紙片的邊AD上,將紙片折疊,使AB落在CE所在直線上,折痕設(shè)為MN(點M,N分別在邊AD,BC上),利用直尺和圓規(guī)畫出折痕MN(不寫作法,保留作圖痕跡,并用黑色水筆把線段MN描清楚);

3)(算一算)如圖3,點F在這張矩形紙片的邊BC上,將紙片折疊,使FB落在射線FD上,折痕為GF,點A,B分別落在點A',B'處,若AG=,求B'D的長;

4)(驗一驗)如圖4,點K在這張矩形紙片的邊AD上,DK=3,將紙片折疊,使AB落在CK所在直線上,折痕為HI,點A,B分別落在點A'B'處,小明認(rèn)為B'I所在直線恰好經(jīng)過點D,他的判斷是否正確,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)活動課上,小明和小紅要測量小河對岸大樹BC的高度,小紅在點A測得大樹頂端B的仰角為45°,小明從A點出發(fā)沿斜坡走3米到達(dá)斜坡上點D,在此處測得樹頂端點B的仰角為31°,且斜坡AF的坡比為12

1)求小明從點A到點D的過程中,他上升的高度;

2)依據(jù)他們測量的數(shù)據(jù)能否求出大樹BC的高度?若能,請計算;若不能,請說明理由.(參考數(shù)據(jù):sin31°≈0.52cos31°≈0.86,tan31°≈0.60

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為落實疫情期間的垃圾分類,樹立全面環(huán)保意識,某校舉行了“垃圾分類,綠色環(huán)!敝R競賽活動,根據(jù)學(xué)生的成績劃分為,,,四個等級,并繪制了不完整的兩種統(tǒng)計圖:

根據(jù)圖中提供的信息,回答下列問題:

1)參加知識競賽的學(xué)生共有______人,并把條形統(tǒng)計圖補(bǔ)充完整;

2)扇形統(tǒng)計圖中,______,______等級對應(yīng)的圓心角為______度;

3)小明是四名獲等級的學(xué)生中的一位,學(xué)校將從獲等級的學(xué)生中任選取2人,參加市舉辦的知識競賽,請用列表法或畫樹狀圖,求小明被選中參加區(qū)知識競賽的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC 中,AB=AC,點 M BA 的延長線上,點 N BC 的延長線上,過點 C CDAB 交∠CAM 的平分線于點 D

1)如圖 1,求證:四邊形 ABCD 是平行四邊形;

2)如圖 2,當(dāng)∠ABC=60°時,連接 BD,過點 D DEBD,交 BN 于點 E,在不添加任何輔助線的情況下,請直接寫出圖 2 中四個三角形(不包含CDE),使寫出的每個三角形的面積與CDE 的面積相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C為⊙O上異于AB的一點,過C點的切線與BA的延長線交于D點,ECD上一點,連接EA并延長交⊙OHFEH上一點,且EFCE,CF交延長線交⊙OG

1)求證:弧AG=弧GH;

2)若EDC的中點,simCDOAH2,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,矩形中,點、分別在線段、上,點與點關(guān)于對稱,點在線段上,連接、、于點.求證:四邊形是菱形;

2)如圖2,矩形中,,點、分別在線段、上,點與點關(guān)于對稱,點在線段上,,求的長;

3)如圖3,有一塊矩形空地,,,點是一個休息站且在線段上,,點在線段上,現(xiàn)要在點關(guān)于對稱的點處修建一口水井,并且修建水渠,以便于在四邊形空地上種植花草,余下部分貼上地磚.種植花草的四邊形空地的面積是否存在最小值,若存在,請求出最小值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定:若拋物線的頂點在坐標(biāo)軸上,則稱該拋物線為數(shù)軸函數(shù)例如拋物線yx2y=(x12都是數(shù)軸函數(shù)

1)拋物線yx24x4和拋物線yx26x數(shù)軸函數(shù)?請說明理由;

2)若拋物線y2x24mxm216數(shù)軸函數(shù),求該拋物線的表達(dá)式

查看答案和解析>>

同步練習(xí)冊答案