【題目】如圖,是△ABC的外接圓,于F,D為的中點,E是BA延長線上一點,,則∠CAD等于( )
A.B.C.D.
【答案】C
【解析】
由于D是弧AC的中點,可知∠ABC=2∠ACD;由于半徑AO⊥BC,由垂徑定理易證得AB=AC,即∠ACB=∠ABC=2∠ACD,由圓內(nèi)接四邊形的性質(zhì)知:∠BCD=∠DAE=114°,由此可求出∠ACD的度數(shù);而∠DAC和∠DCA是等弧所對的圓周角,則∠DAC=∠DCA,由此得解.
∵AO⊥BC,且AO是⊙O的半徑,
∴AO垂直平分BC,
∴AB=AC,即∠ABC=∠ACB,
∵D是的中點,
∴∠ABC=2∠DCA=2∠DAC,
∴∠ACB=2∠DCA,
∵四邊形ABCD內(nèi)接于⊙O,
∴∠BCD=∠DAE=114°,
∴∠ACB+∠DCA=114°,
即3∠DCA=114°,
∴∠CAD=∠DCA=38°.
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由于新冠肺炎影響,全國開展了“停課不停學(xué)”線上教學(xué),為了解學(xué)生在家學(xué)習(xí)情況,五月7日開學(xué)后,某中學(xué)1200名學(xué)生參加了入學(xué)摸底測試,為了了解本次測試成績情況,王老師從中抽取了部分學(xué)生的數(shù)學(xué)成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:
成績分組 | 頻數(shù) | 頻率 |
50≤x<60 | 8 | 0.16 |
60≤x<70 | 12 | a |
70≤x<80 | ■ | 0.5 |
80≤x<90 | 3 | 0.06 |
90≤x≤100 | b | c |
合計 | ■ | 1 |
(1)寫出a,b,c的值;
(2)請估計這1200名學(xué)生中有多少人的成績不低于70分;
(3)在選取的樣本中,從成績是80分以上(含80分)的同學(xué)中隨機抽取兩名同學(xué)參加學(xué)習(xí)經(jīng)驗分享活動,求所抽取的2名同學(xué)來自同一組的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天早上王文上學(xué),先步行一段路,因時間緊,他又改乘出租車,結(jié)果到校時還是遲到了5分鐘,其行程情況如圖,若他出門時直接乘出租車(車速不變),則他( )
A.仍會遲到2分鐘到校B.剛好按時到校
C.可以提前2分鐘到校D.可以提前5分鐘到校
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,PD切⊙O于點C,與BA的延長線交于點D,DE⊥PO交PO延長線于點E,連接PB,∠EDB=∠EPB.
(1)求證:PB是的切線.
(2)若PB=6,DB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有形狀、大小和質(zhì)地都完全相同的四張卡片A、B、C、D,正面上分別寫有四個實數(shù)、、、,將這四張卡片背面朝上洗勻,從中隨機抽取一張(不放回),接著再隨機抽取一張.
(1)用畫樹形圖或列表法表示抽取兩張卡片可能出現(xiàn)的所有情況卡片(可用A、B、C、D表示);
(2)求抽到的兩個數(shù)都是無理數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了全面了解某小區(qū)住戶對物業(yè)的滿意度情況,在小區(qū)內(nèi)進行隨機抽樣調(diào)查,分為四個類別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計圖(不完整).
根據(jù)以上信息,解答下列問題:
(1)將圖1補充完整;
(2)通過分析,住戶對物業(yè)的滿意度(A、B、C類視為滿意)是 ;
(3)小區(qū)分為甲、乙兩片住戶區(qū)域,從甲區(qū)3戶、乙區(qū)2戶共5戶中,隨機抽取兩戶進行滿意度回訪,求這兩戶恰好都在同一住戶區(qū)域的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,將一塊直角三角板如圖放置,直角頂點與原點O重合,頂點A,B恰好分別落在函數(shù)(x<0),y=(x>0)的圖象上,若sin∠BAO = ,則k的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(2,3)。雙曲線的圖像經(jīng)過BC的中點D,且與AB交于點E,連接DE。
(1)求k的值及點E的坐標;
(2)若點F是邊上一點,且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為( 。
A. 3km B. 3km C. 4km D. (3-3)km
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com