【題目】已知:如圖,AB為⊙O的直徑,點C、D在⊙O上,且BC=6cm,AC=8cm,∠ABD=45°.

(1)求BD的長
(2)求圖中陰影部分的面積

【答案】
(1)

解:∵AB為⊙O的直徑,∴∠ACB=90°,∵BC=6cm,AC=8cm,∴AB=10cm.∴OB=5cm.連OD,∵OD=OB,∴∠ODB=∠ABD=45°.

∴∠BOD=90°.∴BD==5cm


(2)

解:S陰影=S扇形﹣S△OBD=π52×5×5=cm2


【解析】(1)由AB為⊙O的直徑,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.連OD,得到等腰直角三角形,根據(jù)勾股定理即可得到結(jié)論;
(2)根據(jù)S陰影=S扇形﹣S△OBD即可得到結(jié)論.
(1)由AB為⊙O的直徑,得到∠ACB=90°,由勾股定理求得AB,OB=5cm.連OD,得到等腰直角三角形,根據(jù)勾股定理即可得到結(jié)論;
(2)根據(jù)S陰影=S扇形﹣S△OBD即可得到結(jié)論.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解學生家長對孩子使用手機的態(tài)度情況,隨機抽取部分學生家長進行問卷調(diào)查,發(fā)出問卷140份,每位學生家長1份,每份問卷僅表明一種態(tài)度,將回收的問卷進行整理(假設(shè)回收的問卷都有效),并繪制了如圖兩幅不完整的統(tǒng)計圖.

根據(jù)以上信息解答下列問題:
(1)回收的問卷數(shù)為 份,“嚴加干涉”部分對應(yīng)扇形的圓心角度數(shù)為
(2)把條形統(tǒng)計圖補充完整.
(3)若將“稍加詢問”和“從來不管”視為“管理不嚴”,已知全校共1500名學生,請估計該校對孩子使用手機“管理不嚴”的家長大約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】知識遷移我們知道,函數(shù)y=a(x﹣m)2+n(a≠0,m>0,n>0)的圖象是由二次函數(shù)y=ax2的圖象向右平移m個單位,再向上平移n個單位得到;類似地,函數(shù)y=+n(k≠0,m>0,n>0)的圖象是由反比例函數(shù)y=的圖象向右平移m個單位,再向上平移n個單位得到,其對稱中心坐標為(m,n).

(1)理解應(yīng)用
函數(shù)y=+1的圖象可由函數(shù)y=的圖象向右平移 個單位,再向上平移 個單位得到,其對稱中心坐標為
(2)靈活應(yīng)用如圖,在平面直角坐標系xOy中,請根據(jù)所給的y=的圖象畫出函數(shù)y=﹣2的圖象,并根據(jù)該圖象指出,當x在什么范圍內(nèi)變化時,y≥﹣1?

(3)實際應(yīng)用
某老師對一位學生的學習情況進行跟蹤研究,假設(shè)剛學完新知識時的記憶存留量為1,新知識學習后經(jīng)過的時間為x,發(fā)現(xiàn)該生的記憶存留量隨x變化的函數(shù)關(guān)系為y1=;若在x=t(t≥4)時進行第一次復習,發(fā)現(xiàn)他復習后的記憶存留量是復習前的2倍(復習的時間忽略不計),且復習后的記憶存留量隨x變化的函數(shù)關(guān)系為y2=,如果記憶存留量為時是復習的“最佳時機點”,且他第一次復習是在“最佳時機點”進行的,那么當x為何值時,是他第二次復習的“最佳時機點”?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為了了解初三年級1000名學生的身體健康情況,從該年級隨機抽取了若干名學生,將他們按體重(均為整數(shù),單位:kg)分成五組(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依據(jù)統(tǒng)計數(shù)據(jù)繪制了如下兩幅尚不完整的統(tǒng)計圖.

解答下列問題:
(1)這次抽樣調(diào)查的樣本容量是  , 并補全頻數(shù)分布直方圖
(2)C組學生的頻率為 ,在扇形統(tǒng)計圖中D組的圓心角是
(3)請你估計該校初三年級體重超過60kg的學生大約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,AC=3,BC=4,將邊AC沿CE翻折,使點A落在AB上的點D處;再將邊BC沿CF翻折,使點B落在CD的延長線上的點B′處,兩條折痕與斜邊AB分別交于點E、F,則線段B′F的長為(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為∠AOB的邊OA上一點,OC=6,N為邊OB上異于點O的一動點,P是線段CN上一點,過點P分別作PQ∥OA交OB于點Q,PM∥OB交OA于點M.

(1)若∠AOB=60°,OM=4,OQ=1,求證:CN⊥OB
(2)當點N在邊OB上運動時,四邊形OMPQ始終保持為菱形.
①問:的值是否發(fā)生變化?如果變化,求出其取值范圍;如果不變,請說明理由.
②設(shè)菱形OMPQ的面積為S1 , △NOC的面積為S2 , 求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O與BC相交于點D,與CA的延長線相交于點E,過點D作DF⊥AC于點F.

(1)試說明DF是⊙O的切線
(2)若AC=3AE,求tanC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平面直角坐標系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標分別為A(﹣1,3),B(﹣4,0),C(0,0)

(1)畫出將△ABC向上平移1個單位長度,再向右平移5個單位長度后得到的△A1B1C1
(2)畫出將△ABC繞原點O順時針方向旋轉(zhuǎn)90°得到△A2B2O;
(3)在x軸上存在一點P,滿足點P到A1與點A2距離之和最小,請直接寫出P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在建立平面直角坐標系的方格紙中,每個小方格都是邊長為1的小正方形,△ABC的頂點均在格點上,點P的坐標為(﹣1,0),請按要求畫圖與作答:

(1)把△ABC繞點P旋轉(zhuǎn)180°得△A′B′C.
(2)把△ABC向右平移7個單位得△A″B″C″.
(3)△A′B′C與△A″B″C″是否成中心對稱,若是,找出對稱中心P′,并寫出其坐標.

查看答案和解析>>

同步練習冊答案