如圖AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)若AB=2,∠P=30°,求AP的長(zhǎng);
(2)若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.

【答案】分析:(1)首先根據(jù)切線的性質(zhì)判定∠BAP=90°;然后在直角三角形ABP中利用三角函數(shù)的定義求得AP的長(zhǎng)度;
(2)連接OC,OD、AC構(gòu)建全等三角形△OAD≌△OCD,然后利用全等三角形的對(duì)應(yīng)角相等推知∠OAD=∠OCD=90°,即OC⊥CD.
解答:(1)解:∵AB是⊙O的直徑,AP是⊙O的切線,
∴AB⊥AP,
∴∠BAP=90°;
又∵AB=2,∠P=30°,
∴AP===2,即AP=2;

(2)證明:如圖,連接OC,OD、AC.
∵AB是⊙O的直徑,
∴∠ACB=90°(直徑所對(duì)的圓周角是直角),
∴∠ACP=90°;
又∵D為AP的中點(diǎn),
∴AD=CD(直角三角形斜邊上的中線等于斜邊的一半);
在△OAD和△OCD中,
,
∴△OAD≌△OCD(SSS),
∴∠OAD=∠OCD(全等三角形的對(duì)應(yīng)角相等);
又∵AP是⊙O的切線,A是切點(diǎn),
∴AB⊥AP,
∴∠OAD=90°,
∴∠OCD=90°,即直線CD是⊙O的切線.
點(diǎn)評(píng):本題綜合考查了圓周角定理、切線的判定與性質(zhì).注意掌握輔助線的作法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖AB是⊙O的直徑,C是⊙O上的一點(diǎn),若AC=8cm,AB=10cm,OD⊥BC于點(diǎn)D,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖AB是⊙O的直徑,弦DC⊥AB于點(diǎn)E,在
AD
上取一點(diǎn)F,連接精英家教網(wǎng)CF交AB于點(diǎn)M,連接DF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)N.
求證:
(1)∠DFC=∠DOB;
(2)MN•OM=MC•FM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖AB是⊙O的直徑,∠D=35°,則∠AOC=
70°
70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•自貢)如圖AB是⊙O的直徑,AP是⊙O的切線,A是切點(diǎn),BP與⊙O交于點(diǎn)C.
(1)若AB=2,∠P=30°,求AP的長(zhǎng);
(2)若D為AP的中點(diǎn),求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•南昌)如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無刻度的直尺按要求畫圖.
(1)在圖1中,畫出△ABC的三條高的交點(diǎn);
(2)在圖2中,畫出△ABC中AB邊上的高.

查看答案和解析>>

同步練習(xí)冊(cè)答案