【題目】將分別標有數(shù)字1,2,3的三張卡片(卡片除所標注數(shù)字外其他均相同)洗勻后,背面朝上放在桌面上.
(1)隨機地抽取一張,直接寫出抽到的卡片所標數(shù)字是奇數(shù)的概率;
(2)隨機地抽取一張,將卡片上標有的數(shù)字作為十位上的數(shù)字(不放回),再隨機地抽取一張卡片,將卡片上標有的數(shù)字作為個位上的數(shù)字,用列表或樹狀圖的方法求組成的兩位數(shù)恰好是“32”的概率.
科目:初中數(shù)學 來源: 題型:
【題目】設都是實數(shù),且.我們規(guī)定:滿足不等式的實數(shù)的所有值的全體叫做閉區(qū)間、表示為.對于一個函數(shù),如果它的自變量與函數(shù)值滿足:當時,有,我們就稱此函數(shù)是閉區(qū)間上的“閉函數(shù)”.
(1)反比例函數(shù)是閉區(qū)間上的“閉函數(shù)”嗎?請判斷并說明理由;
(2)若一次函數(shù)是閉區(qū)間上的“閉函數(shù)”,求此一次函數(shù)的解析式;
(3)若實數(shù)滿足.且,當二次函數(shù)是閉區(qū)間上的“閉函數(shù)”時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】類比等腰三角形的定義,我們定義:有一組鄰邊相等的凸四邊形叫做“等鄰邊四邊形”.
概念理解:
如圖,在四邊形中,添加一個條件使得四邊形是“等鄰邊四邊形”.請寫出你添加的一個條件,你添加的條件是________.
問題探究:
如圖,在“等鄰邊四邊形”中,,,,求對角線的長.
拓展應用:
如圖,“等鄰邊四邊形”中,,,,為對角線,試探究,,的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,按以下步驟作圖:①以點A為圓心,以小于AC的長為半徑作弧,分別交AC,AB于點M,N;②分別以點M,N為圓心,以大于MN的長為半徑作弧,兩弧相交于點O;③連接AP,交BC于點E.若CE=3,BE=5,則AC的長為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+6過點A(6,0),B(4,6),與y軸交于點C.
(1)求該拋物線的解析式;
(2)如圖1,直線l的解析式為y=x,拋物線的對稱軸與線段BC交于點P,過點P作直線l的垂線,垂足為點H,連接OP,求△OPH的面積;
(3)把圖1中的直線y=x向下平移4個單位長度得到直線y=x-4,如圖2,直線y=x-4與x軸交于點G.點P是四邊形ABCO邊上的一點,過點P分別作x軸、直線l的垂線,垂足分別為點E,F.是否存在點P,使得以P,E,F為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在正方形ABCD中,AD=6,點P是對角線BD上任意一點,連接PA,PC,過點P作PE⊥PC交直線AB于點E.
(1)求證: PC=PE;
(2)延長AP交直線CD于點F.
①如圖2,若點F是CD的中點,求△APE的面積;
②若△APE的面積是,則DF的長為_________;
(3)如圖3,點E在邊AB上,連接EC交BD于點M,作點E關(guān)于BD的對稱點Q,連接PQ, MQ,過點P作交EC于點N,連接,若,則的面積是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(滿分10分)已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,求直線AB與這個二次函數(shù)的解析式;
(3)在直線AB上方的拋物線上有一動點D,當D與直線AB的距離DE最大時,求點D的坐標,并求DE最大距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國際合作高峰論壇在北京舉行,本屆論壇期間,中國同30多個國家簽署經(jīng)貿(mào)合作協(xié)議,某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com