【題目】計算:16+(﹣25)+24﹣15.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年級380名師生秋游,計劃租用7輛客車,現(xiàn)有甲、乙兩種型號客車,它們的載客量和租金如表.
甲種客車 | 乙種客車 | |
載客量(座/輛) | 60 | 45 |
租金(元/輛) | 550 | 450 |
(1)設(shè)租用甲種客車x輛,租車總費用為y元.求出y(元)與x(輛)之間的函數(shù)表達(dá)式;
(2)當(dāng)甲種客車有多少輛時,能保障所有的師生能參加秋游且租車費用最少,最少費用是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=600,則AE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知甲、乙兩種商品原單價的和為100元,因市場變化,甲商品降價10%,乙商品提價5%.調(diào)價后,甲、乙兩種商品的單價和比原單價和提高了2%,求甲、乙兩種商品的原單價各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為a的等邊△ACB中,E是對稱軸AD上一個動點,連EC,將線段EC繞點C逆時針旋轉(zhuǎn)60°得到MC,連DM,則在點E運動過程中,DM的最小值是_____。
【答案】1.5
【解析】試題分析:取AC的中點G,連接EG,根據(jù)等邊三角形的性質(zhì)可得CD=CG,再求出∠DCF=∠GCE,根據(jù)旋轉(zhuǎn)的性質(zhì)可得CE=CF,然后利用“邊角邊”證明△DCF和△GCE全等,再根據(jù)全等三角形對應(yīng)邊相等可得DF=EG,然后根據(jù)垂線段最短可得EG⊥AD時最短,再根據(jù)∠CAD=30°求解即可.
解:如圖,取AC的中點G,連接EG,
∵旋轉(zhuǎn)角為60°,
∴∠ECD+∠DCF=60°,
又∵∠ECD+∠GCE=∠ACB=60°,
∴∠DCF=∠GCE,
∵AD是等邊△ABC的對稱軸,
∴CD=BC,
∴CD=CG,
又∵CE旋轉(zhuǎn)到CF,
∴CE=CF,
在△DCF和△GCE中,
,
∴△DCF≌△GCE(SAS),
∴DF=EG,
根據(jù)垂線段最短,EG⊥AD時,EG最短,即DF最短,
此時∵∠CAD=×60°=30°,AG=AC=×6=3,
∴EG=AG=×3=1.5,
∴DF=1.5.
故答案為:1.5.
考點:旋轉(zhuǎn)的性質(zhì);等邊三角形的性質(zhì).
【題型】填空題
【結(jié)束】
19
【題目】分解因式:
(1) ; (2)9(m+n)2﹣16(m﹣n)2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,AD是∠BAC的平分線.
(1)尺規(guī)作圖:過點D作DE⊥AC于E;
(2)求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請仔細(xì)閱讀下面材料,然后解決問題:
在分式中,對于只含有一個字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時,我們稱之為“假分式”.例如: , ;當(dāng)分子的次數(shù)小于分母的次數(shù)時,我們稱之為“真分式”,例如: , .我們知道,假分?jǐn)?shù)可以化為帶分?jǐn)?shù),例如: ,類似的,假分式也可以化為“帶分式”(整式與真分式和的形式),例如: .
(1)將分式化為帶分式;
(2)當(dāng)x取哪些整數(shù)值時,分式的值也是整數(shù)?
(3)當(dāng)x的值變化時,分式的最大值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com