【題目】有四張正面分別標有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機地摸取一張,將卡片上的數(shù)字記為n.
(1)請畫出樹狀圖并寫出(m,n)所有可能的結果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第二、三、四象限的概率.

【答案】
(1)解:畫樹狀圖得:

則(m,n)共有12種等可能的結果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3)


(2)解:∵所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第第二、三、四象限的有:(﹣3,﹣4),(﹣4,﹣3),

∴所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第第二、三、四象限的概率為: =


【解析】(1)事件分兩步驟完成,第一步有4種情況,第2步有3種,共有43=12種;(2)圖象經(jīng)過第二、三、四象限要求m<0,,n<0,有2種,兩者相除即可.
【考點精析】解答此題的關鍵在于理解概率公式的相關知識,掌握一般地,如果在一次試驗中,有n種可能的結果,并且它們發(fā)生的可能性都相等,事件A包含其中的m中結果,那么事件A發(fā)生的概率為P(A)=m/n.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,延長線上一點,點上,且

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的弦,D為OA半徑的中點,過D作CD⊥OA交弦AB于點E,交⊙O于點F,且CE=CB.

(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA= ,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知∠AOB=90°,點A繞點O順時針旋轉后的對應點A1落在射線OB上,點A繞點A1順時針旋轉后的對應點A2落在射線OB上,點A繞點A2順時針旋轉后的對應點A3落在射線OB上,…,連接AA1 , AA2 , AA3…,依此作法,則∠AAnAn+1等于度.(用含n的代數(shù)式表示,n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在,,沿平移,且使點平移到,平移后的對應點分別為

1)寫出兩點的坐標;

2)畫出平移后所得的;

3)五邊形的面積

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點的坐標滿足:

1)求出點的坐標

2)如圖1,連接,點在四邊形外面且在第一象限,再連,則,求點坐標.

3)如圖2所示,為線段上一動點,(在右側)為上一動點,使軸始終平分,連,那么是否為定值?若為定值,請直接寫出定值,若不是,請簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國家推行“節(jié)能減排,低碳經(jīng)濟”政策后,低排量的汽車比較暢銷,某汽車經(jīng)銷商購進A,B兩種型號的低排量汽車,其中A型汽車的進貨單價比B型汽車的進貨單價多2萬元花50萬元購進A型汽車的數(shù)量與花40萬元購進B型汽車的數(shù)量相同,銷售中發(fā)現(xiàn)A型汽車的每周銷量yA(臺)與售價x(萬元/臺)滿足函數(shù)關系式y(tǒng)A=﹣x+20,B型汽車的每周銷量yB(臺)與售價x(萬元/臺)滿足函數(shù)關系式y(tǒng)B=﹣x+14.
(1)求A、B兩種型號的汽車的進貨單價;
(2)已知A型汽車的售價比B型汽車的售價高2萬元/臺,設B型汽車售價為t萬元/臺.每周銷售這兩種車的總利潤為W萬元,求W與t的函數(shù)關系式,A、B兩種型號的汽車售價各為多少時,每周銷售這兩種車的總利潤最大?最大總利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】完成下面的證明:

已知:如圖,點 D,E,F 分別在線段 AB,BC,AC 上,連接 DE、EF,DM 平分∠ADE EF 于點 M,∠1+2=180° 求證:∠B =BED

證明:∵∠1+∠2=180°(已知),

∵∠1+∠BEM=180°(平角定義),

∴∠2=∠BEM ),

DM ).

∴∠ADM =∠B ),

MDE =∠BED ).

DM 平分ADE (已知),

∴∠ADM =∠MDE (角平分線定義)

∴∠B =∠BED ).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F若點DBC邊的中點,點M為線段EF上一動點,則周長的最小值為  

A. 6 B. 8 C. 10 D. 12

查看答案和解析>>

同步練習冊答案