【題目】如圖,在南北方向的海岸線MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船c的求救信號.已知A、B兩船相距100(+3)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀測點(diǎn)D,測得船C正好在觀測點(diǎn)D的南偏東75°方向上.
(1)分別求出A與C,A與D之間的距離AC和AD(如果運(yùn)算結(jié)果有根號,請保留根號).
(2)已知距觀測點(diǎn)D處200海里范圍內(nèi)有暗礁.若巡邏船A沿直線AC去營救船C,在去營救的途中有無觸暗礁危險(xiǎn)?(參考數(shù)據(jù):≈1.41,≈1.73)
【答案】(1)A與C之間的距離AC為200海里,A與D之間的距離AD為200(3﹣)海里;(2)巡邏船A沿直線AC去營救船C,在去營救的途中無觸暗礁危險(xiǎn).
【解析】
(1)作CE⊥AB于點(diǎn)E,則∠ABC=45°,∠BAC=60°,設(shè)AE=x海里,在Rt△AEC中,CE=AEtan60°,在Rt△BCE中,BE=CE=x,由AE+BE=x+x=100(3+)求出x的值,再根據(jù)AC=2x得出AC的值,在△ACD中,由∠DAC=60°,∠ADC=75°得出∠ACD=45°.過點(diǎn)D作DF⊥AC于點(diǎn)F,設(shè)AF=y,則DF=CF=y,根據(jù)AC=y+y=200求出y的值,故可得出AD的長,進(jìn)而得出結(jié)論;
(2)根據(jù)(1)中的結(jié)論得出DF的長,再與200相比較即可.
(1)作CE⊥AB于點(diǎn)E,則∠ABC=45°,∠BAC=60°,設(shè)AE=x海里,
∵在Rt△AEC中,CE=AEtan60°=x,
在Rt△BCE中,BE=CE=x,
∴AE+BE=x+x=100(3+),解得x=100,
∴AC=2x=200,
在△ACD中,
∵∠DAC=60°,∠ADC=75°,
∴∠ACD=45°.
過點(diǎn)D作DF⊥AC于點(diǎn)F,設(shè)AF=y,則DF=CF=y,
∴AC=y+y=200,解得y=100(3﹣),
∴AD=2y=200(3﹣).
答:A與C之間的距離AC為200海里,A與D之間的距離AD為200(3﹣)海里;
(2)∵由(1)可知,DF=AF=×100(3﹣)≈219,
∵219>200,
∴巡邏船A沿直線AC去營救船C,在去營救的途中無觸暗礁危險(xiǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+b與反比例函數(shù)y=的圖形交于A(a,4)和B(4,1)兩點(diǎn).
(1)求b,k的值;
(2)在第一象限內(nèi),當(dāng)一次函數(shù)y=﹣x+b的值大于反比例函數(shù)y=的值時(shí),直接寫出自變量x的取值范圍;
(3)將直線y=﹣x+b向下平移m個(gè)單位,當(dāng)直線與雙曲線只有一個(gè)交點(diǎn)時(shí),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】自我省深化課程改革以來,某校開設(shè)了:A.利用影長求物體高度,B.制作視力表,C.設(shè)計(jì)遮陽棚,D.制作中心對稱圖形,四類數(shù)學(xué)實(shí)踐活動課.規(guī)定每名學(xué)生必選且只能選修一類實(shí)踐活動課,學(xué)校對學(xué)生選修實(shí)踐活動課的情況進(jìn)行抽樣調(diào)查,將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.
根據(jù)圖中信息解決下列問題:
(1)本次共調(diào)查名學(xué)生,扇形統(tǒng)計(jì)圖中B所對應(yīng)的扇形的圓心角為度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)選修D類數(shù)學(xué)實(shí)踐活動的學(xué)生中有2名女生和2名男生表現(xiàn)出色,現(xiàn)從4人中隨機(jī)抽取2人做校報(bào)設(shè)計(jì),請用列表或畫樹狀圖法求所抽取的兩人恰好是1名女生和1名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著移動終端設(shè)備的升級換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):A.和同學(xué)親友聊天;B.學(xué)習(xí);C.購物;D.游戲;E.其它),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出):根據(jù)以上信息解答下列問題:
(1)這次被調(diào)查的學(xué)生有多少人?
(2)求表中m,n,p的值,并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)約有800名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購物或玩游戲的共有多少人?并根據(jù)以上調(diào)查結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
選項(xiàng) | 頻數(shù) | 頻率 |
A | 10 | m |
B | n | 0.2 |
C | 5 | 0.1 |
D | p | 0.4 |
E | 5 | 0.1 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年的5月15日是”世界助殘日”,某商場門前的臺階共高出地面1.2米,為幫助殘疾人,便于輪椅行走,準(zhǔn)備拆除臺階換成斜坡,又考慮安全,輪椅行走斜坡的坡角不得超過9°,已知此商場門前的人行道距門前垂直距離為8米(斜坡不能修在人行道上),問此商場能否把臺階換成斜坡?(參考數(shù)據(jù)sin9°=0.1564,cos9°=0.9877,tan9°=0.1584)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料,完成任務(wù):
自相似圖形
定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.
任務(wù):
(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為 ;
(2)如圖2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)△ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CD⊥AB于點(diǎn)D,則CD將△ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則△ACD與△ABC的相似比為 ;
(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).
請從下列A、B兩題中任選一條作答:我選擇 題.
A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a= (用含b的式子表示);
②如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a= (用含n,b的式子表示);
B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含b的式子表示);
②如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a= (用含m,n,b的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表所示:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,下列說法中,錯(cuò)誤的是( )
A. 拋物線于x軸的一個(gè)交點(diǎn)坐標(biāo)為(﹣2,0)
B. 拋物線與y軸的交點(diǎn)坐標(biāo)為(0,6)
C. 拋物線的對稱軸是直線x=0
D. 拋物線在對稱軸左側(cè)部分是上升的
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點(diǎn)P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.
(1)求m,n的值.
(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點(diǎn)P,與x軸相交于點(diǎn)A,與二次函數(shù)的圖象相交于另一點(diǎn)B,點(diǎn)B在點(diǎn)P的右側(cè),PA:PB=1:5,求一次函數(shù)的表達(dá)式.
(3)直接寫出y1>y2時(shí)x的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com