【題目】如圖,在平面直角坐標(biāo)系中,軸相切,直線截得的弦長為,若點的坐標(biāo)為,則的值為(

A.B.C.D.

【答案】B

【解析】

過點PPHABH,PDx軸于D,交直線y=xE,連結(jié)PA,根據(jù)切線的性質(zhì)得PCy軸,則P點的橫坐標(biāo)為4,所以E點坐標(biāo)為(4,4),易得△EOD和△PEH都是等腰直角三角形,根據(jù)垂徑定理由PHABAH=,根據(jù)勾股定理可得PH=2,于是根據(jù)等腰直角三角形的性質(zhì)得PE=,則PD=,然后利用第一象限點的坐標(biāo)特征寫出P點坐標(biāo).

解:過點PPHABHPDx軸于D,交直線y=xE,連結(jié)PA

∵⊙Py軸相切于點C
PCy軸,
P點的橫坐標(biāo)為4,
E點坐標(biāo)為(4,4),
∴△EOD和△PEH都是等腰直角三角形,
PHAB
AH=,
在△PAH中,PH=,
PE=,
PD= ,
P點坐標(biāo)為(4,).

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6,AD=12,點E在AD邊上,且AE=8,EFBE交CD于F.

(1)求證:ABE∽△DEF;

(2)求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知ABC三個頂點的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).

(1)請在圖中,畫出ABC向左平移6個單位長度后得到的△A1B1C1;

(2)以點O為位似中心,將ABC縮小為原來的,得到△A2B2C2,請在圖中y軸右側(cè),畫出△A2B2C2,并求出∠A2C2B2的正弦值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義一種新函數(shù):形如的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫出了“鵲橋”函數(shù)的圖象(如圖所示),并寫出下列五個結(jié)論:圖象與坐標(biāo)軸的交點為;圖象具有對稱性,對稱軸是直線;當(dāng)時,函數(shù)值值的增大而增大;當(dāng)時,函數(shù)的最小值是;當(dāng)時,函數(shù)的最大值是,其中正確結(jié)論的個數(shù)是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過,兩點,且與軸交于點,拋物線與直線交于,兩點.

1)求拋物線的解析式;

2)坐標(biāo)軸上是否存在一點,使得是以為底邊的等腰三角形?若存在,請直接寫出點的坐標(biāo);若不存在,說明理由.

3點在軸上且位于點的左側(cè),若以,為頂點的三角形與相似,求點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形的頂點,,的坐標(biāo)分別,,以為頂點的拋物線過點.動點從點出發(fā),以每秒個單位的速度沿線段向點勻速運(yùn)動,過點軸,交對角線于點.設(shè)點運(yùn)動的時間為(秒).

1)求拋物線的解析式;

2)若的面積為的兩部分,求的值;

3)若動點出發(fā)的同時,點出發(fā),以每秒1個單位的速度沿線段向點勻速運(yùn)動,點為線段上一點.若以,,,為頂點的四邊形為菱形,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】周末,小華和小亮想用所學(xué)的數(shù)學(xué)知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標(biāo)桿BC,再在AB的延長線上選擇點D豎起標(biāo)桿DE,使得點E與點C、A共線.

已知:CBAD,EDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據(jù)相關(guān)測量信息,求河寬AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O過ABCD的三頂點A、D、C,邊AB與O相切于點A,邊BC與O相交于點H,射線AD交邊CD于點E,交O于點F,點P在射線AO上,且PCD=2DAF.

(1)求證:ABH是等腰三角形;

(2)求證:直線PC是O的切線;

(3)若AB=2,AD=,求O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蓉從格致樓底樓點A處沿立人大禮堂旁的臺階AB拾階而上,步行20米后到達(dá)萬象樓樓底點B,再從點B直線行進(jìn)15米到達(dá)直通博雅樓的臺階底端C,然后沿臺階CD步行至博雅樓底樓的小平臺D.在D點處測得豎立于百匯園旁的萬象樓BE的樓頂點E的仰角為30°.如圖所示,已知臺階AB與水平地面夾角為45°,臺階CD與水平地面夾角為60°,CD12米,點A,BC,D,E在同一平面.則格致樓樓底點A到萬象樓樓頂點E的垂直高度約為( 。▍⒖紨(shù)據(jù):1.71.4

A.22.1B.35.2C.27.3D.36.1

查看答案和解析>>

同步練習(xí)冊答案