(2013•江干區(qū)一模)如圖,在Rt△ABC 中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉(zhuǎn)90°后,得到△AFB,連接EF,下列結(jié)論:
①△AED≌△AEF;    ②∠FAD=90°;③BE+DC=DE;      ④BE2+DC2=DE2
其中正確的是
①②④
①②④
分析:△ADC繞點A順時針90°旋轉(zhuǎn)后,得到△AFB,根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,而∠DAE=45°,得到∠EAF=90°-45°=45°,所以②正確;易得△AED≌△AEF,則EF=ED,所以①正確;在Rt△BEF中,根據(jù)勾股定理即可得到BE2+DC2=DE2,所以④正確.根據(jù)旋轉(zhuǎn)的定義及性質(zhì),結(jié)合圖形求解.
解答:解:∵△ADC繞點A順時針90°旋轉(zhuǎn)后,得到△AFB,
∴∠FAD=90°,DC=BF,∠FBE=90°,AD=AF,
∵∠DAE=45°,
∴∠EAF=90°-45°=45°,
∴△AED≌△AEF,
∴EF=ED,
在Rt△BEF中,BE2+BF2=EF2
∴BE2+DC2=DE2
∴①②④正確.
故填:①②④.
點評:本題考查了旋轉(zhuǎn)的性質(zhì):旋轉(zhuǎn)前后兩圖形全等,對應點到旋轉(zhuǎn)中心的距離相等,對應點與旋轉(zhuǎn)中心的連線段所夾的角等于旋轉(zhuǎn)角.也考查了三角形全等的判定與性質(zhì)以及勾股定理.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•江干區(qū)一模)已知x是實數(shù),且(x-2)(x-3)
1-x
=0,則x2+x+1的值為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•江干區(qū)一模)已知兩直線y1=kx+k-1、y2=(k+1)x+k(k為正整數(shù)),設(shè)這兩條直線與x軸所圍成的三角形的面積為Sk,則S1+S2+S3+…+S2013的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•江干區(qū)一模)如圖,點P是反比例函數(shù)y=
6
x
的圖象上的任意一點,過點P分別作兩坐標軸的垂線,與坐標軸構(gòu)成矩形OAPB,點D是矩形OAPB內(nèi)任意一點,連接DA、DB、DP、DO,則圖中陰影部分的面積是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•江干區(qū)一模)孫楊正在為備戰(zhàn)第15屆游泳世錦賽而刻苦訓練.為判斷他的成績是否穩(wěn)定,教練要對他10次訓練的成績進行統(tǒng)計分析,則教練需了解10次成績的( 。

查看答案和解析>>

同步練習冊答案