(2010•南寧)如圖,每個小正方形的邊長為1,△ABC的三邊a,b,c的大小關系式( )

A.a<c<b
B.a<b<c
C.c<a<b
D.c<b<a
【答案】分析:通過小正方形網格,可以看出AB=4,AC、BC分別與三角形外構成直角三角形,再利用勾股定理可分別求出AC、BC,然后比較三邊的大小即可.
解答:解:∵AC==5=,BC==,AB=4=
∴b>a>c,
即c<a<b.
故選C.
點評:本題利用了勾股定理,在直角三角形中,兩直角邊的平方和等于斜邊的平方.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2010•南寧)如圖,把拋物線y=-x2(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得出拋物線l1,拋物線l2與拋物線l1關于y軸對稱.點A,O,B分別是拋物線l1,l2與x軸的交點,D,C分別是拋物線l1,l2的頂點,線段CD交y軸于點E.
(1)分別寫出拋物線l1與l2的解析式;
(2)設P使拋物線l1上與D,O兩點不重合的任意一點,Q點是P點關于y軸的對稱點,試判斷以P,Q,C,D為頂點的四邊形是什么特殊的四邊形?請說明理由.
(3)在拋物線l1上是否存在點M,使得S△ABM=S四邊形AOED?如果存在,求出M點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西南寧市中考數(shù)學試卷(解析版) 題型:解答題

(2010•南寧)如圖,把拋物線y=-x2(虛線部分)向右平移1個單位長度,再向上平移1個單位長度,得出拋物線l1,拋物線l2與拋物線l1關于y軸對稱.點A,O,B分別是拋物線l1,l2與x軸的交點,D,C分別是拋物線l1,l2的頂點,線段CD交y軸于點E.
(1)分別寫出拋物線l1與l2的解析式;
(2)設P使拋物線l1上與D,O兩點不重合的任意一點,Q點是P點關于y軸的對稱點,試判斷以P,Q,C,D為頂點的四邊形是什么特殊的四邊形?請說明理由.
(3)在拋物線l1上是否存在點M,使得S△ABM=S四邊形AOED?如果存在,求出M點的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(07)(解析版) 題型:填空題

(2010•南寧)如圖,AB為半圓O的直徑,OC⊥AB,OD平分∠BOC,交半圓于點D,AD交OC于點E,則∠AEO的度數(shù)是    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西南寧市中考數(shù)學試卷(解析版) 題型:填空題

(2010•南寧)如圖所示,點A1,A2,A3在x軸上,且OA1=A1A2=A2A3,分別過點A1,A2,A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1,B2,B3,分別過點B1,B2,B3作x軸的平行線,分別于y軸交于點C1,C2,C3,連接OB1,OB2,OB3,那么圖中陰影部分的面積之和為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西南寧市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•南寧)如圖,從地面豎直向上拋出一個小球,小球的高度h(單位:m)與小球運動時間t(單位:s)之間的關系式為h=30t-5t2,那么小球從拋出至回落到地面所需要的時間是( )

A.6s
B.4s
C.3s
D.2s

查看答案和解析>>

同步練習冊答案