【題目】(9分)已知代數(shù)式(ax-3)(2x+4)-x2-b化簡后,不含x2項和常數(shù)項.
(1)求a,b的值;
(2)求(2a+b)2-(a-2b)(a+2b)-3a(a-b)的值.
【答案】(1) a=,b=-12; (2)678.
【解析】試題分析:(1)原式利用多項式乘以多項式法則計算,去括號合并同類項后根據(jù)題意確定出a與b的值即可;
(2)原式利用完全平方公式,平方差公式,單項式乘以多項式法則計算,去括號合并得到最簡結(jié)果,把a與b的值代入計算即可求出代數(shù)式的值.
解:(1)原式=2ax2+4ax-6x-12-x2-b=(2a-1)x2+(4a-6)x+(-12-b).∵不含x2項和常數(shù)項,∴2a-1=0,-12-b=0,(3分)∴a=,b=-12.
(2)原式=4a2+4ab+b2-a2+4b2-3a2+3ab=7ab+5b2.(7分)當a=,b=-12時,原式=7××(-12)+5×(-12)2=678.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某中學有一塊四邊形的空地ABCD,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,問學校需要投入多少資金買草皮?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,已知直線y=x+3與x軸交于點A,與y軸交于點B,將直線在x軸下方的部分沿x軸翻折,得到一個新函數(shù)的圖象(圖中的“V形折線”).
(1)類比研究函數(shù)圖象的方法,請列舉新函數(shù)的兩條性質(zhì),并求新函數(shù)的解析式;
(2)如圖2,雙曲線y=與新函數(shù)的圖象交于點C(1,a),點D是線段AC上一動點(不包括端點),過點D作x軸的平行線,與新函數(shù)圖象交于另一點E,與雙曲線交于點P.
①試求△PAD的面積的最大值;
②探索:在點D運動的過程中,四邊形PAEC能否為平行四邊形?若能,求出此時點D的坐標;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中∠C=90°,AC=BC=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經(jīng)過點C,則圖中陰影部分的面積為__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點C在AOB的一邊OA上,過點C的直線DE//OB,CF平分ACD,CG CF于C .
(1)若O =40,求ECF的度數(shù);
(2)求證:CG平分OCD;
(3)當O為多少度時,CD平分OCF,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點A(1,0),B(2,0),C(0,﹣2),直線x=m(m>2)與x軸交于點D.
(1)求二次函數(shù)的解析式;
(2)在直線x=m(m>2)上有一點E(點E在第四象限),使得E、D、B為頂點的三角形與以A、O、C為頂點的三角形相似,求E點坐標(用含m的代數(shù)式表示);
(3)在(2)成立的條件下,拋物線上是否存在一點F,使得四邊形ABEF為平行四邊形?若存在,請求出F點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:已知點A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點之間的距離表示為|AB|,當A、B兩點中有一點在原點時,不妨設點A在原點,如圖1,|AB|=|OB|=|b|=|a﹣b|,當A、B兩點都不在原點時.
(1)如圖2,點A、B都在原點的右邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=b﹣a=|a﹣b|
(2)如圖3,點A、B都在原點的左邊,|AB|=|OB|﹣|OA|=|b|﹣|a|=﹣b﹣(﹣a)=a﹣b=|a﹣b|
(3)如圖4,點A、B在原點的兩邊,|AB|=|OA|+|OB|=|a|+|b|=a+(﹣b)=a﹣b=|a﹣b|
綜上,數(shù)軸上A、B兩點的距離|AB|=|a﹣b|
回答下列問題:
(1)數(shù)軸上表示2和5的兩點之間的距離是 ,數(shù)軸上表示﹣2和﹣5的兩點之間的距離是 ,數(shù)軸上表示﹣2和5的兩點之間的距離是 ;
(2)數(shù)軸上表示x和﹣1的兩點A和B之間的距離是 ,如果|AB|=2那么x為 .
(3)若x表示一個有理數(shù),則|x﹣1|+|x+3|有最小值嗎?若有,請求出最小值;若沒有,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com