已知△ABC是等腰三角形.

(1)如果它的兩邊長分別為3cm和8cm,那么它的周長是多少?

(2)如果它的周長是18cm,一條邊長為4cm,那么腰長是多少?

答案:
解析:

  解  (1)若腰長為3cm,則三邊長為3cm、3cm、8cm,因?yàn)?+3<8,即出現(xiàn)了兩邊之和小于第三邊的情況,所以不能組成三角形,舍去.

  若腰長為8cm,則三邊長為8cm、8cm、3cm,滿足組成三角形的條件,所以這個等腰三角形的周長為

  8+8+3=19(cm).

  (2)若所給邊長為此三角形的腰長,則此三角形的三邊長分別為4cm、4cm、10cm,出現(xiàn)了4+4<10,不符合實(shí)際情況,舍去.故所給邊長只能是此三角形的底邊長,這時由此三角形的周長是18cm知,這個三角形的腰長為

  (18-4)÷2=7(cm).

  分析  由于等腰三角形的特殊性——兩腰長度相同,所以在題目未說明腰與底邊長分別是多少時,就得分情況討論,根據(jù)實(shí)際情況得出正確結(jié)論.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年廣東省湛江市中考數(shù)學(xué)模擬試卷(五)(解析版) 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年廣東省湛江市中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年江蘇省鹽城市鹽城中學(xué)初三年級中考模擬數(shù)學(xué)試卷1(解析版) 題型:解答題

如圖,已知△ABC是等腰直角三角形,∠C=90度.
(1)操作并觀察,如圖,將三角板的45°角的頂點(diǎn)與點(diǎn)C重合,使這個角落在∠ACB的內(nèi)部,兩邊分別與斜邊AB交于E、F兩點(diǎn),然后將這個角繞著點(diǎn)C在∠ACB的內(nèi)部旋轉(zhuǎn),觀察在點(diǎn)E、F的位置發(fā)生變化時,AE、EF、FB中最長線段是否始終是EF?寫出觀察結(jié)果.
(2)探索:AE、EF、FB這三條線段能否組成以EF為斜邊的直角三角形?如果能,試加以證明.

查看答案和解析>>

同步練習(xí)冊答案