【題目】如圖,已知射線AB與直線CD交于點O,OF平分∠BOC,OG⊥OF于O,AE∥OF,且∠A=30°.
(1)求∠DOF的度數(shù);
(2)試說明OD平分∠AOG.

【答案】
(1)解:∵AE∥OF,

∴∠FOB=∠A=30°,

∵OF平分∠BOC,

∴∠COF=∠FOB=30°,

∴∠DOF=180°﹣∠COF=150°


(2)解:∵OF⊥OG,

∴∠FOG=90°,

∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,

∵∠AOD=∠COB=∠COF+∠FOB=60°,

∴∠AOD=∠DOG,

∴OD平分∠AOG


【解析】(1)根據(jù)兩直線平行,同位角相等可得∠FOB=∠A=30°,再根據(jù)角平分線的定義求出∠COF=∠FOB=30°,然后根據(jù)平角等于180°列式進行計算即可得解;(2)先求出∠DOG=60°,再根據(jù)對頂角相等求出∠AOD=60°,然后根據(jù)角平分線的定義即可得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個多邊形的每一個外角都等于40°,則它的內(nèi)角和等于___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年全國財政收入為9057.97億元,9057.97用科學(xué)記數(shù)法表示為( 。

A. 9.05797×102 B. 9.05797×103

C. 9.05797×104 D. 9.05797×105

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】蘇州地處太湖之濱,有豐富的水產(chǎn)養(yǎng)殖資源,水產(chǎn)養(yǎng)殖戶李大爺準備進行大閘蟹與河蝦的混合養(yǎng)殖,他了解到如下信息:

①每畝水面的年租金為500元,水面需按整數(shù)畝出租;

②每畝水面可在年初混合投放4公斤蟹苗和20公斤蝦苗;

③每公斤蟹苗的價格為75元,其飼養(yǎng)費用為525元,當(dāng)年可獲1 400元收益;

④每公斤蝦苗的價格為15元,其飼養(yǎng)費用為85元,當(dāng)年可獲160元收益;

(1)若租用水面n畝,則年租金共需__________元;

(2)水產(chǎn)養(yǎng)殖的成本包括水面年租金、苗種費用和飼養(yǎng)費用,求每畝水面蟹蝦混合養(yǎng)殖的年利潤(利潤=收益-成本);

(3)李大爺現(xiàn)在資金25 000元,他準備再向銀行貸不超過25 000元的款,用于蟹蝦混合養(yǎng)殖.已知銀行貸款的年利率為8%,試問李大爺應(yīng)該租多少畝水面,并向銀行貸款多少元,可使年利潤超過35 000元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)南充市創(chuàng)建“全國衛(wèi)生城市”的號召,某校1500名學(xué)生參加了衛(wèi)生知識競賽,成績記為A、B、C、D四等.從中隨機抽取了部分學(xué)生成績進行統(tǒng)計,繪制成如圖兩幅不完整的統(tǒng)計圖表,根據(jù)圖表信息,以下說法不正確的是(
A.樣本容量是200
B.D等所在扇形的圓心角為15°
C.樣本中C等所占百分比是10%
D.估計全校學(xué)生成績?yōu)锳等大約有900人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將數(shù)字“6”旋轉(zhuǎn)180°,得到數(shù)字“9”,將數(shù)字“9”旋轉(zhuǎn)180°,得到數(shù)字“6”,現(xiàn)將數(shù)字“69”旋轉(zhuǎn)180°,得到的數(shù)字是(
A.96
B.69
C.66
D.99

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程ax2﹣2x﹣1=0有兩個不相等的實數(shù)根,則a的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列現(xiàn)象,能說明“線動成面”的是( 。

A. 天空劃過一道流星

B. 汽車雨刷在擋風(fēng)玻璃上刷出的痕跡

C. 拋出一塊小石子,石子在空中飛行的路線

D. 旋轉(zhuǎn)一扇門,門在空中運動的痕跡

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中,A(a,0),C(b,2),且滿足 ,過C作CB⊥x軸于B.

(1)求△ABC的面積.
(2)若過B作BD∥AC交y軸于D,且AE,DE分別平分∠CAB,∠ODB,如圖2,求∠AED的度數(shù).
(3)在y軸上是否存在點P,使得△ABC和△ACP的面積相等?若存在,求出P點坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案