【題目】某出租車公司在“五一”期間平均每天的營(yíng)業(yè)額為5萬(wàn)元,由此推斷該出租車公司5月份的總營(yíng)業(yè)額約為5×31=155(萬(wàn)元),根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),你認(rèn)為這樣的推斷是否合理?答:__________.(填“合理”或“不合理”)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)相似三角形的相似比為1∶4,其中較小三角形某一條邊上的中線為3,則較大三角形對(duì)應(yīng)邊上的中線為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,M是線段AC的中點(diǎn),N是線段BC的中點(diǎn).
(1)如果AC=8cm,BC=6cm,求MN的長(zhǎng).
(2)如果AM=5cm,CN=2cm,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD中,BD是它的一條對(duì)角線,過(guò)A、C兩點(diǎn)作AE⊥BD,CF⊥BD,垂足分別為E、F,延長(zhǎng)AE、CF分別交CD、AB于M、N。
(1)(4分)求證:四邊形CMAN是平行四邊形。
(2)(4分)已知DE=4,F(xiàn)N=3,求BN的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料
點(diǎn)A、B在數(shù)軸上分別表示有理數(shù)a、b,A、B兩點(diǎn)之間的距離表示為AB,在數(shù)軸上A、B兩點(diǎn)之間的距離AB=|a﹣b| .也就是說(shuō),|4﹣(﹣3)|表示4與﹣3之差的絕對(duì)值,實(shí)際上也可理解為4與﹣3兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離.
比如|x + 3|可以寫成|x﹣(﹣3)|,它的幾何意義是數(shù)軸上表示數(shù)x的點(diǎn)與表示數(shù)﹣3的點(diǎn)之間的距離.
再舉個(gè)例子:等式|x﹣1|=1的幾何意義可表示為:在數(shù)軸上表示數(shù)x的點(diǎn)與表示數(shù)1的點(diǎn)的距離等于1,這樣的數(shù)x可以是0或2.
解決問(wèn)題
(1) |4﹣(﹣3)|= .
(2)若|x + 3|=7,則x =______;若|x + 3|=|x﹣1|,則x = ______.
(3)| x + 3|+|x﹣1|表示數(shù)軸上有理數(shù)x所對(duì)的點(diǎn)到﹣3和1所對(duì)的兩點(diǎn)距離之和.請(qǐng)你利用數(shù)軸,找出所有符合條件的整數(shù)x,使得| x + 3|+|x﹣1|=4.
(4)若表示一個(gè)有理數(shù),則有最小值嗎?若有,請(qǐng)直接寫出最小值.若沒(méi)有,說(shuō)出理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=x2+3向左平移2個(gè)單位,那么平移后的拋物線表達(dá)式是( 。
A. y=(x+2)2+3 B. y=(x﹣2)2+3 C. y=x2+1 D. y=x2+5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果y=3是方程2+(m-y)=2y的解,那么關(guān)于x的方程2mx=(m+1)(3x-5)的解是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把a(bǔ)2-2a分解因式,正確的是( )
A.a(a-2)
B.a(a+2)
C.a(a2-2)
D.a(2-a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若⊙O的半徑為6cm,PO=8cm,則點(diǎn)P的位置是( 。
A. 在⊙O外 B. 在⊙O上 C. 在⊙O內(nèi) D. 不能確定
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com