(2003•黑龍江)五個正整數(shù)從小到大排列,若這組數(shù)據(jù)的中位數(shù)是4,唯一眾數(shù)是5,則這五個正整數(shù)的和為   
【答案】分析:將五個正整數(shù)從小到大重新排列后,有5個數(shù),中位數(shù)一定也是數(shù)組中的數(shù),根據(jù)中位數(shù)與眾數(shù)就可以確定數(shù)組中的后三個數(shù).
而另外兩個不相等且是正整數(shù),就可以確定這兩個數(shù),進而得到這五個數(shù).
解答:解:將五個正整數(shù)從小到大重新排列后,最中間的那個數(shù)是這組數(shù)據(jù)的中位數(shù),即4;
唯一的眾數(shù)是5,最多出現(xiàn)兩次,即第四、五兩個數(shù)都是5.
第一二兩個數(shù)不能相等,可以為1與2或1與3或2與3;
則這五個正整數(shù)的和為17或18或19.
點評:本題考查眾數(shù)與中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到。┲匦屡帕泻,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù).眾數(shù)是數(shù)據(jù)中出現(xiàn)最多的一個數(shù).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《一次函數(shù)》(04)(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=S梯形AOBC?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年中考數(shù)學預(yù)考題(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點的橫坐標為1,則a+c的值為   

查看答案和解析>>

科目:初中數(shù)學 來源:2005年湖南省岳陽市岳化一中高一新生數(shù)學綜合能力測試(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點的橫坐標為1,則a+c的值為   

查看答案和解析>>

科目:初中數(shù)學 來源:2003年黑龍江省中考數(shù)學試卷(解析版) 題型:解答題

(2003•黑龍江)已知:如圖,直角坐標系內(nèi)的梯形AOBC,AC∥OB,AC、OB的長分別是關(guān)于x的方程x2-6mx+m2+4=0的兩根,并且S△AOC:S△BOC=1:5.
(1)求AC、OB的長;
(2)當BC⊥OC時,求OC的長及OC所在直線的解析式;
(3)在第(2)問的條件下,線段OC上是否存在一點M,過M點作x軸的平行線,交y軸于F,交BC于D,過D點作y軸的平行線,交x軸于點E,使S矩形FOED=S梯形AOBC?若存在,請直接寫出M點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年黑龍江省中考數(shù)學試卷(解析版) 題型:填空題

(2003•黑龍江)已知拋物線y=ax2+x+c與x軸交點的橫坐標為1,則a+c的值為   

查看答案和解析>>

同步練習冊答案