【題目】如圖,△ABC中,∠C=90°,AB=5cm,BC=3cm,,若動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求△ABP的周長(zhǎng).
(2)問t為何值時(shí),△BCP為等腰三角形?
(3)另有一點(diǎn)Q,從點(diǎn)C開始,按C→B→A→C的路徑運(yùn)動(dòng),且速度為每秒2cm,若P、Q兩點(diǎn)同時(shí)出發(fā),當(dāng)P、Q中有一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動(dòng).當(dāng)t為何值時(shí),直線PQ把△ABC的周長(zhǎng)分成相等的兩部分?
【答案】(1) 7+;(2) t為3s、5.4s、6s、6.5s;(3) t為2或6秒.
【解析】
(1)根據(jù)速度為每秒1cm,求出出發(fā)2秒后CP的長(zhǎng),然后就知AP的長(zhǎng),利用勾股定理求得PB的長(zhǎng),最后即可求得周長(zhǎng).
(2)因?yàn)?/span>AB與CB,由勾股定理得AC=4 因?yàn)?/span>AB為5cm,所以必須使AC=CB,或CB=AB,所以必須使AC或AB等于3,有兩種情況,△BCP為等腰三角形.
(3)分類討論:當(dāng)P點(diǎn)在AC上,Q在AB上,則PC=t,BQ=2t-3,t+2t-3=6;當(dāng)P點(diǎn)在AB上,Q在AC上,則AC=t-4,AQ=2t-8,t-4+2t-8=6.
解:(1)如圖1,由∠C=90°,AB=5cm,BC=3cm,
∴AC=4,動(dòng)點(diǎn)P從點(diǎn)C開始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒1cm,
∴出發(fā)2秒后,則CP=2,
∵∠C=90°,
∴PB==,
∴△ABP的周長(zhǎng)為:AP+PB+AB=2+5+=7+.
(2)①如圖2,若P在邊AC上時(shí),BC=CP=3cm,
此時(shí)用的時(shí)間為3s,△BCP為等腰三角形;
②若P在AB邊上時(shí),有三種情況:
i)如圖3,若使BP=CB=3cm,此時(shí)AP=2cm,P運(yùn)動(dòng)的路程為2+4=6cm,
所以用的時(shí)間為6s,△BCP為等腰三角形;
ii)如圖4,若CP=BC=3cm,過C作斜邊AB的高,根據(jù)面積法求得高為2.4cm,
作CD⊥AB于點(diǎn)D,
在Rt△PCD中,PD==1.8,
所以BP=2PD=3.6cm,
所以P運(yùn)動(dòng)的路程為9-3.6=5.4cm,
則用的時(shí)間為5.4s,△BCP為等腰三角形;
ⅲ)如圖5,若BP=CP,此時(shí)P應(yīng)該為斜邊AB的中點(diǎn),P運(yùn)動(dòng)的路程為4+2.5=6.5cm
則所用的時(shí)間為6.5s,△BCP為等腰三角形;
綜上所述,當(dāng)t為3s、5.4s、6s、6.5s時(shí),△BCP為等腰三角形
(3)如圖6,當(dāng)P點(diǎn)在AC上,Q在AB上,則PC=t,BQ=2t-3,
∵直線PQ把△ABC的周長(zhǎng)分成相等的兩部分,
∴t+2t-3=3,
∴t=2;
如圖7,當(dāng)P點(diǎn)在AB上,Q在AC上,則AP=t-4,AQ=2t-8,
∵直線PQ把△ABC的周長(zhǎng)分成相等的兩部分,
∴t-4+2t-8=6,
∴t=6,
∴當(dāng)t為2或6秒時(shí),直線PQ把△ABC的周長(zhǎng)分成相等的兩部分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)至按照一定規(guī)律排成下表:
…… |
記表示第行第個(gè)數(shù),如表示第行第個(gè)數(shù)是.
(1)直接寫出_______________,_______________;
(2)①如果,那么_________________,________;②用,表示__________;
(3)將表格中的個(gè)陰影格子看成一個(gè)整體并平移,所覆蓋的個(gè)數(shù)之和能否等于.若能,求出這個(gè)數(shù)中的最小數(shù),若不能說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用若干等長(zhǎng)的木棒按如圖的方式擺放.
填寫下表:
圖形編號(hào) | ||||||
木棒根數(shù) | 7 | 12 | ______ | ______ | ______ |
搭第n個(gè)圖形需要多少根木棒?
搭第幾個(gè)圖形需要2017根木棒?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列兩個(gè)等式:,,給出定義如下:我們稱使等式成立的一對(duì)有理數(shù)為“理想有理數(shù)對(duì)”,記為,如:數(shù)對(duì)、都是“理想有理數(shù)對(duì)”.
(1)數(shù)對(duì)、中是“理想有理數(shù)對(duì)”的是______;
(2)若是“理想有理數(shù)對(duì)”,求a的值;
(3)若是“理想有理數(shù)對(duì)”,則______“理想有理數(shù)對(duì)”(填“是”、“不是”或“不確定”);
(4)請(qǐng)?jiān)賹懗鲆粚?duì)符合條件的“理想有理數(shù)對(duì)”.(不能與題目中已有的數(shù)對(duì)重復(fù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象經(jīng)過A(2,0),B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)的對(duì)稱軸與x軸交于點(diǎn)C,連接BA,BC,求△ABC的面積.
(3)在x軸上是否存在一點(diǎn)P,使△ABP為等腰三角形,若存在,求出P的坐標(biāo),若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下面給出的數(shù)軸,解答下面的問題:
(1)請(qǐng)你根據(jù)圖中A、B兩點(diǎn)的位置,分別寫出它們所表示的有理數(shù)A: ,B: ;
(2)觀察數(shù)軸,與點(diǎn)A的距離為4的點(diǎn)表示的數(shù)是: ;
(3)若將數(shù)軸折疊,使得A點(diǎn)與﹣3表示的點(diǎn)重合,則B點(diǎn)與數(shù) 表示的點(diǎn)重合.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣1,且拋物線經(jīng)過A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)在拋物線的對(duì)稱軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線的對(duì)稱軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線SN與直線WE相交于點(diǎn)O,射線ON表示正北方向,射線OE表示正東方向.已知射線OB的方向是南偏東56°,射線 OC在∠NOE內(nèi),且∠NOC與∠BOS互余,射線OA平分∠BON,圖中與∠COA互余的角是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】、兩地相距,甲、乙兩車分別從、兩地同時(shí)出發(fā),相向而行.已知甲車速度為,乙車速度為,經(jīng)過后兩車相距,則的值是( )
A.2B.10C.2或10D.2或2.5
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com