【題目】如圖,直角邊長(zhǎng)為1的等腰直角三角形與邊長(zhǎng)為2的正方形在同一水平線上,三角形沿水平線從左向右勻速穿過(guò)正方形.設(shè)穿過(guò)時(shí)間為t,正方形與三角形不重合部分的面積為s(陰影部分),則s與t的大致圖象為( 。

A.
B.
C.
D.

【答案】A
【解析】解:∵直角邊長(zhǎng)為1的等腰直角三角形與邊長(zhǎng)為2的正方形在同一水平線上,三角形沿水平線從左向右勻速穿過(guò)正方形.設(shè)穿過(guò)時(shí)間為t,正方形與三角形不重合部分的面積為s,
∴s關(guān)于t的函數(shù)大致圖象應(yīng)為:三角形進(jìn)入正方形以前s增大,
當(dāng)0≤t≤ 時(shí),s= ×1×1+2×2﹣ = t2
當(dāng) <t≤2時(shí),s= ×12= ;
當(dāng)2<t≤3時(shí),s= (3﹣t)2= t2﹣3t,
∴A符合要求,故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)如圖1,在△ABC中,∠BAC=2∠B,∠BAD=∠DAC.說(shuō)明:∠BAD=∠B.

(2)如圖2,已知點(diǎn)EBA延長(zhǎng)線上,∠EAD=∠CAD,∠B=∠C.說(shuō)明:AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,直線ABCD

(1)如圖1,點(diǎn)E在直線BD的左側(cè),猜想∠ABE、CDE、BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(2)如圖2,點(diǎn)E在直線BD的左側(cè),BF、DF分別平分∠ABE、CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;

(3)如圖3,點(diǎn)E在直線BD的右側(cè),BF、DF分別平分∠ABE、CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請(qǐng)證明;如果不成立,請(qǐng)寫出你的猜想,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,延長(zhǎng)AD到點(diǎn)E,使DE=AD,連接EB,EC,DB請(qǐng)你添加一個(gè)條件 , 使四邊形DBCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形的頂點(diǎn)A(1,1)、B(3,1),規(guī)定把等邊△ABC“先沿x軸翻折,再向左平移1個(gè)單位”為一次変換,如果這樣連續(xù)經(jīng)過(guò)2016次變換后,等邊△ABC的頂點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,一個(gè)四邊形紙片 ABCD,B=D=90°,把紙片按如圖所示折疊,使點(diǎn) B 落在 AD 邊上的 B′點(diǎn),AE 是折痕.

(1)試判斷 B′E DC 的位置關(guān)系,并說(shuō)明理由;

(2)如果∠C=128°,求∠AEB 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,∠AOB=90°,點(diǎn)C在射線OA上,CD∥OE.
(1)如圖1,若∠OCD=120°,求∠BOE的度數(shù);
(2)把“∠AOB=90°”改為“∠AOB=120°”,射線OE沿射線OB平移,得O′E,其他條件不變,(如圖2所示),探究∠OCD、∠BO′E的數(shù)量關(guān)系;
(3)在(2)的條件下,作PO′⊥OB垂足為O′,與∠OCD的平分線CP交于點(diǎn)P,若∠BO′E=α,請(qǐng)用含α的式子表示∠CPO′(請(qǐng)直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時(shí)輪船所在位置B處與燈塔P之間的距離為( 。

A.60海里
B.45海里
C.20 海里
D.30 海里

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩同學(xué)同時(shí)從山腳開(kāi)始爬山,到達(dá)山頂后立即下山,在山腳和山頂之間不斷往返運(yùn)動(dòng),已知山坡長(zhǎng)為360m,甲、乙上山的速度比是6:4,并且甲、乙下山的速度都是各自上山速度的1.5倍,當(dāng)甲第三次到達(dá)山頂時(shí),則此時(shí)乙所在的位置是。

查看答案和解析>>

同步練習(xí)冊(cè)答案