有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內,可以延長存活時間,但每天也有一定數量的蟹死去.假設放養(yǎng)期內蟹的個體質量基本保持不變,現有一經銷商,按市場價收購這種活蟹1000 kg放養(yǎng)在塘內,此時市場價為每千克30元,據測算,此后每千克活蟹的市場價每天可上升1元,但是,放養(yǎng)一天需支出各種費用為400元,且平均每天還有10 kg蟹死去,假定死蟹均于當天全部銷售出,售價都是每千克20元.
(1)設x天后每千克活蟹的市場價為p元,寫出p關于x的函數關系式(不要求寫出自變量的取值范圍);
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000 kg蟹的銷售總額為Q元,寫出Q關于x的函數關系式;
(3)該經銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(利潤=Q-收購總額)?
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
(12分)
有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內,可以延長存活時間,但每天也有一定數量的蟹死去.假設放養(yǎng)期內蟹的個體質量基本保持不變,現有一經銷商,按市場價收購這種活蟹1000 kg放養(yǎng)在塘內,此時市場價為每千克30元,據測算,此后每千克活蟹的市場價每天可上升1元,但是,放養(yǎng)一天需支出各種費用為400元,且平均每天還有10 kg蟹死去,假定死蟹均于當天全部銷售出,售價都是每千克20元.
(1)設x天后每千克活蟹的市場價為p元,寫出p關于x的函數關系式;
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000 kg蟹的銷售總額為Q元,寫出Q關于x的函數關系式.
(3)該經銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(利潤=Q-收購總額)?
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源:2011年廣東省深圳景新中學初一第一學期期末數學卷 題型:解答題
(12分)
有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內,可以延長存活時間,但每天也有一定數量的蟹死去.假設放養(yǎng)期內蟹的個體質量基本保持不變,現有一經銷商,按市場價收購這種活蟹1000 kg放養(yǎng)在塘內,此時市場價為每千克30元,據測算,此后每千克活蟹的市場價每天可上升1元,但是,放養(yǎng)一天需支出各種費用為400元,且平均每天還有10 kg蟹死去,假定死蟹均于當天全部銷售出,售價都是每千克20元.
(1)設x天后每千克活蟹的市場價為p元,寫出p關于x的函數關系式;
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000 kg蟹的銷售總額為Q元,寫出Q關于x的函數關系式.
(3)該經銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(利潤=Q-收購總額)?
查看答案和解析>>
科目:初中數學 來源:2011年廣東省初一第一學期期末數學卷 題型:解答題
(12分)
有一種螃蟹,從海上捕獲后不放養(yǎng),最多只能存活兩天.如果放養(yǎng)在塘內,可以延長存活時間,但每天也有一定數量的蟹死去.假設放養(yǎng)期內蟹的個體質量基本保持不變,現有一經銷商,按市場價收購這種活蟹1000 kg放養(yǎng)在塘內,此時市場價為每千克30元,據測算,此后每千克活蟹的市場價每天可上升1元,但是,放養(yǎng)一天需支出各種費用為400元,且平均每天還有10 kg蟹死去,假定死蟹均于當天全部銷售出,售價都是每千克20元.
(1)設x天后每千克活蟹的市場價為p元,寫出p關于x的函數關系式;
(2)如果放養(yǎng)x天后將活蟹一次性出售,并記1000 kg蟹的銷售總額為Q元,寫出Q關于x的函數關系式.
(3)該經銷商將這批蟹放養(yǎng)多少天后出售,可獲最大利潤(利潤=Q-收購總額)?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com