如圖,直線y=-數(shù)學公式x+4與x軸、y軸分別交于點M、N.
(1)求M、N兩點的坐標;
(2)如果點P在坐標軸上,以點P為圓心,數(shù)學公式為半徑的圓與直線y=-數(shù)學公式x+4相切,求點P的坐標.

解:(1)當x=0時,y=4,
當y=0時,-x+4=0∴x=3.
∴M(3,0),N(0,4).

(2)①當P1點在y軸上,并且在N點的下方時,設(shè)⊙P1與直線y=-x+4相切于點A,
連接P1A,則P1A⊥MN,∴∠P1AN=∠MON=90°.
∵∠P1NA=∠MNO,
∴△P1AN∽△MON,∴
在Rt△OMN中,OM=3,ON=4,∴MN=5.
又∵,∴P1N=4,
∴P1點坐標是(0,0);
②當P2點在x軸上,并且在M點的左側(cè)時,同理可得P2點坐標是(0,0);
③當P3點在x軸上,并且在M點的右側(cè)時,設(shè)⊙P3與直線y=-x+4上切于點B,連接P3B.
則P3B⊥MN,∴OA∥P3B.
∵OA=P3B,∴P3M=OM=3,∴OP3=6.
∴P3點坐標是(6,0);
④當P4點在y軸上,并且在點N上方時,同理可得P4N=ON=4.
∴OP4=8,∴P4點坐標是(0,8);
綜上,P點坐標是(0,0),(6,0),(0,8).
分析:第一問簡單,已知直線解析式,易求M,N點坐標;
由題意知點P在坐標軸上,說的很模糊,所以要分類討論,再根據(jù)圓的性質(zhì)及相切的條件,又知道圓的半徑,從而求出每種情況的P點坐標.
點評:此題考查一次函數(shù)的基本性質(zhì)及圓的性質(zhì),把直線與圓連接起來,不免有相切的關(guān)系,還考查相似三角形的性質(zhì)及分類討論的思想.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

4、如圖,直線AB、CD相交于點E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習冊答案